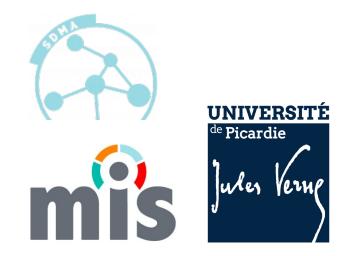
PADEC Interactive Proof for Self-Stabilizing Algorithms

Karine Altisen, Pierre Corbineau, Stéphane Devismes



How to Gain Confidence into Distributed Algorithms?

Why? Complex statements: Algorithms, Topologies, Scheduling assumptions...

Pen&paper Proof (usual practice)

Proof = artifact to *convince of the validity* of an assertion

From [Lamport, How to Write a 21st Century Proof, 2012] "Proofs are still written in prose pretty much the way they were in the 17th century. [...]" "Proofs are unnecessarily hard to understand, and they encourage sloppiness that leads to errors."

How to Gain Confidence into Distributed Algorithms?

Pen&paper Proof (usual practice)

Test, Simulation

Verification, e.g. Model-Checking

Machine-checked Proof (proof assistant)

- Challenges:
- \rightarrow correctness, few convergence
- \rightarrow very few quantitative properties
- \rightarrow no complexity

➔ PADEC

A Coq Framework to Prove *Self-stabilizing* Algorithms in the *Atomic State Model (ASM)*

- \rightarrow prone to error?
- \rightarrow few pattern cases
- \rightarrow scaling
- \rightarrow heavy development

The PADEC Project

«Preuves d'Algorithmes Distribués En Coq» "Proofs of Distributed Algorithms using Coq"

- **Goal:** Formal proofs for *self-stabilizing* distributed algorithms in the *Atomic State Model (ASM)*
- Formalism: Coq and its libraries as a foundation

PADEC provides a Coq library including:

- General tools
- Computational model and specifications
- Lemmas corresponding to common proof patterns
- Case-studies

The Coq Proof Assistant: Functional Programming and Formal Proofs

- Functional and formal language with mathematically defined semantics
- For definitions and proofs
- Interactive proof-editing
- Automated checking of formal proofs

Success Stories:

- System proofs: CompCert, certified C compiler
- Mathematical proofs: Feit-Thompson theorem

Coq uses the <u>same</u> formal language for *programs* and for *proofs*

program type type checking programming

proof logical statement proof checking proving

PADEC – Short How To

Algorithm 1 Algorithm BFS, code for each node p.

Constant Local Input: $p.neigh \subseteq Node; p.root \in \{t, f\}$ Local Variables: $p.d \in \mathbb{N}$; $p.par \in Node$ Macros: $Dist_p = \min\{q.d+1, q \in p.neigh\}$ $Par_{dist} =$ fst { $q \in p.neigh, q.d + 1 = p.d$ } Algorithm for the root(p.root = true) **Root** Action: if $p.d \neq 0$ then p.d is set to 0 Algorithm for any non-root node(p.root = false) CD Action: if $p.d \neq Dist_p$ then p.d is set to $Dist_p$ if $p.d = Dist_p$ and $p.par.d + 1 \neq p.d$ then *CP* Action: p.par is set to Par_{dist} Algorithm Network State Channel Node run

Instantiate Algorithm:

- State = a record of local var.
- run = a faithful translation

Express Assumption:

- Daemon e.g., weakly fair
- Network, e.g. rooted, bidir, connected

Express Specification:

- Self-stabilizing w.r.t. a problem *e.g.,* BFS spanning tree
- **Complexity**, e.g. convergence requires at most (Diameter+2) **Rounds**

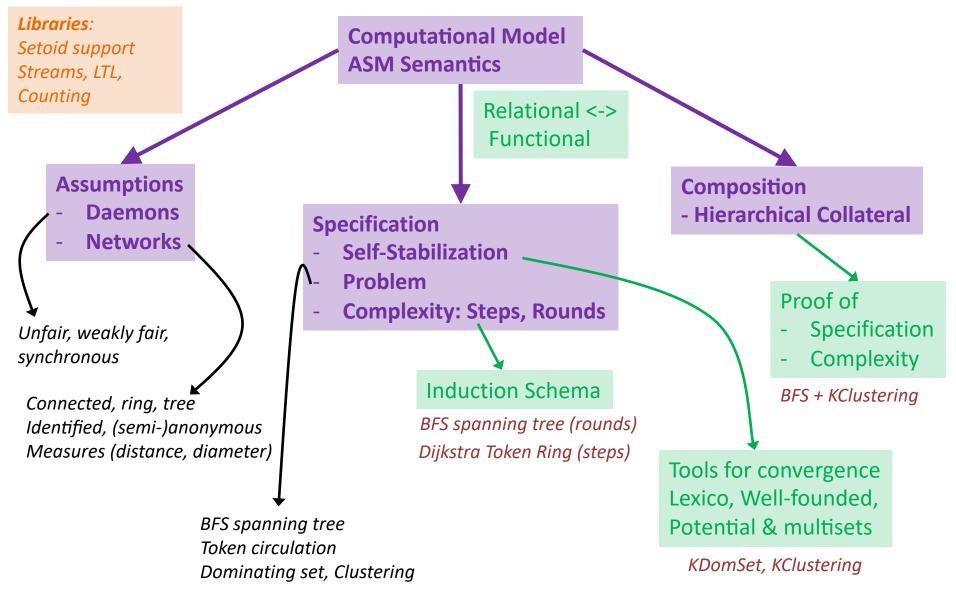
Prove it!!

De	fin	iti	0	ns
_			-	

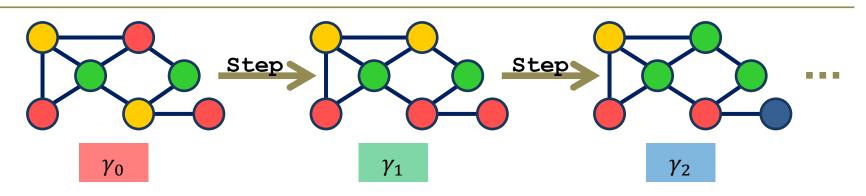
Examples

PADEC – Big Picture

Case studies



Computational Model – ASM Semantics



Configuration γ_i : **Env** (state of all nodes **Env** := Node -> State)

Atomic step - read local & neighbor variables \rightarrow enabled?

- daemon selection
- node computation \rightarrow update local variables

relation Step := Env -> Env -> Prop

Execution Exec := Stream Env Streams
such that (predicate is_exec: Exec -> Prop)

- Each two consecutive configurations are linked by _____
- if the stream is finite, the last configuration is *terminal*

Relational semantics <-> Functional semantics

Relational semantics: an execution is defined by any e: Stream Env such that is_exec e

Functional Semantics: defines an execution by

- -> an initial configuration γ and
- -> a daemon: selects the set of nodes to execute at each step, defined as an (infinite) stream of selections

build_exec (\u03c6: Env) (daemon: Daemon): Exec

Equivalence between both semantics:

• Soundness:

 \forall daemon γ , is_exec (build_exec γ daemon).

• Completeness:

∀e, is_exec e →
∃daemon, e =~= build exec (Head of e) daemon.

Setoid support

Configurations are functions: γ : Env and Env := Node -> State

In former implementations, configurations were lists of states.

- => Proof depends on the order of elements and repeats
- => *heavy* additional developments

Need: equality on functions

to be able to express γ_0 is the same configuration as γ_1 $\gamma_0 = = \gamma_1 < -> \forall \times, \gamma_0 \times = \gamma_1 \times$

Difficulty: Default Coq equality = *Leibniz Equality* = proof (program) equality = *intentional* equality *not satisfactory for functions!!*

Example:

Setoid Support

 \Rightarrow In PADEC, every type has a <u>user-defined equality</u>.

- **Base-type:** equivalence relation on Node and State
- Function type: e.g. Env := Node -> State

 γ_0 =~= γ_1 <-> \forall n n': Node, γ_0 n = γ_1 n'

 \rightarrow NOT reflexive in general!! Partial equivalence relation

=> Proofs are restricted to proper objects, e.g. such that $\gamma = \gamma \gamma$

=> Explicitlely defined functions have to be proved <u>compatible</u>

 $\forall x y, x = -y - f x = - f y$

Other types that are incompatible with Leibniz equality:

- Coinductive types: Executions Exec
- Comprehensions: e.g. natural numbers such that... { n: nat | ... }

Setoid Support:

- ...

Type classes mechanism \rightarrow automation Library for relations on datatypes

Assumptions about Networks

Networks

- Basic properties (bidirectional, connected, rooted)
- Topologies (ring, tree)
- Measures (number of nodes, distance, diameter)

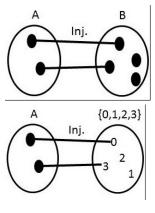
Counting

- Comparison of arbitrary set cardinalities
 Witnessed by an injective functional relation between elements
- Counting of elements by comparison to $\{0, \ldots, n-1\}$
- Effect of set-theoretic operators on cardinality: intersection, union, product, set comprehension, inclusion, singleton, empty set

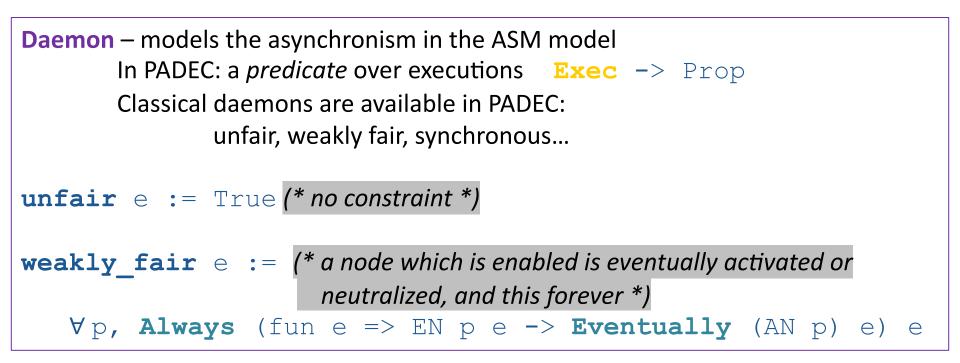
=> Diameter is smaller that n

•••

Express and prove results about Quantitative Properties and Complexities



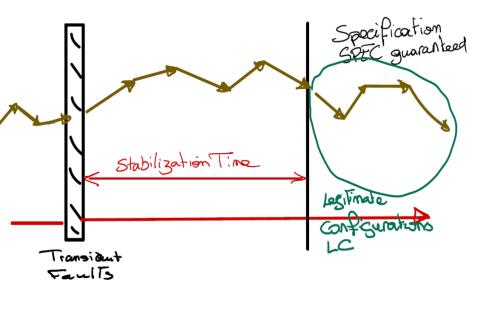
Assumptions about Daemons



LTL Library

- Linear Temporal Logic
- Defines classical LTL Operators
- On Type **Exec**

Specification – Self-Stabilization



Tools for *Convergence* :

- Lexicographic ordering,
- Well-foundedness,
- Potential & Multiset ordering

<u>Closure</u>: if e starts in LC then Always e remains in LC

<u>Convergence:</u> Eventually e reaches LC

Well-foundedness

prove that relation Step outside LC and restricted to Assumptions is Well-Founded (every decreasing sequence is finite)

Potential

Use a potential function **Pot** on configurations and a well-founded order < st: $\forall \gamma_0 \gamma_1, \gamma_0 \xrightarrow{\text{Step}} \gamma_1 \rightarrow Pot \gamma_1 < Pot \gamma_0$

Usually: aggregating *local potential* values at all nodes

- Sum of potentials at all nodes (integer values)
- Multiset of potentials at all nodes (arbitrary ordered values)

Multiset of potentials at all nodes

Finite Multiset ordering: [Dershowitz, Manna 1979]

To obtain M1 smaller than M2

- remove some copies of big values from M2
- replace them with any number of smaller values in M1

This finite multiset ordering is *well-founded*, (provided that the value ordering relation is well-founded)

Coq Support: [CoLoR Library]

Local Potential (at each node)

Simplified criteria: during a step,

- potential must change at some node AND
- when a node increases its potential, there must be another node with higher potential whose potential decreases (alibi/scapegoat node)

Specification – Problem - Complexity

Problems

- BFS spanning tree
- Token circulation
- *K-Clustering* and quantitative property on the number of clusters

Expressed in SPEC: Exec -> Prop

Complexity measures

- **Steps** (number of atomic steps in executions) *Dijkstra Token Ring (steps)*
- **Rounds** BFS spanning tree (rounds)

Induction Schema – e.g. (simplified): P(n): Exec -> Prop e: Exec

```
If \forall e, \forall n \leq B, P(n) e \rightarrow e reaches P(n+1) in at most one Steps/Rounds
If P(0) e holds
Then e reaches P(B) in at most B Steps/Rounds
```

Hierarchical Collateral Composition

	A1	assumes H1 is self-stabilizing w.r.t. SPEC1 and terminates (silent)
A1;A2-	A2	shares variables with A1 but cannot overwrite them assumes SPEC1 is self-stabilizing w.r.t. SPEC2
	weakl	y fair daemon (so that A1 can converge)

Proof of specification: A1;A2 is self-stabilizing, w.r.t. SPEC2 assuming H1 (convergence is quite tricky)

Proof of complexity: (WIP)

PADEC: a Coq Framework to prove Self-Stabilizing Algorithms

General Model: (not dedicated to a particular case) Atomic State Model, Daemons, ... → Close to designer

Reasoning on formal proof: as close as possible of the pen&paper proof → Get rid of generality using simplifying tools!

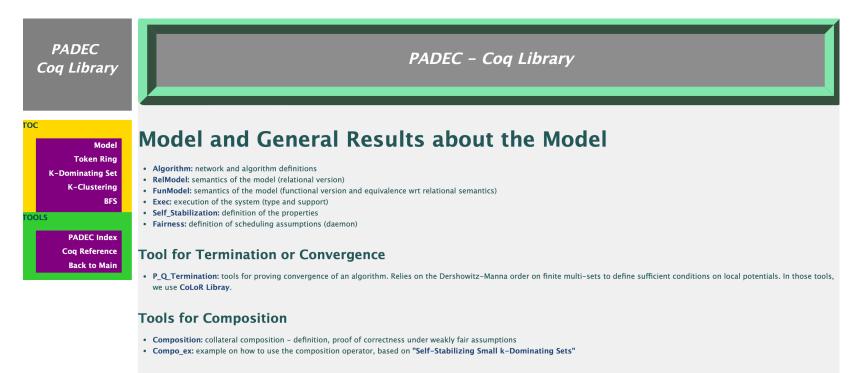
Generic powerful tools: counting, slices, graph properties...

Formal proofs: strengthen assumptions; develop new proofs and sometimes bring new results!

PADEC

http://www-verimag.imag.fr/~altisen/PADEC/

#loc = 96k (spec); 33k (proof); 7k (comments)



Tools for Complexity

• Steps: step complexity. Tools to measure stabilization times (and other performances) in steps. Relies on Stream_Length