
PADEC
Interactive Proof for

Self-Stabilizing Algorithms
Karine Altisen, Pierre Corbineau, Stéphane Devismes

How to Gain Confidence into Distributed Algorithms?

Why? Complex statements:
Algorithms, Topologies, Scheduling assump9ons...

Pen&paper Proof (usual prac9ce)

Proof = ar9fact to convince of the validity of an asser9on

From [Lamport, How to Write a 21st Century Proof, 2012]
“Proofs are s3ll wri5en in prose pre5y much the way they were in the
17th century. [...]"
“Proofs are unnecessarily hard to understand, and they encourage
sloppiness that leads to errors."

2

Pen&paper Proof (usual practice) à prone to error?

Test, Simulation à few pattern cases

Verification, e.g. Model-Checking à scaling

Machine-checked Proof (proof assistant) à heavy development
Challenges:
à correctness, few convergence
à very few quantitative properties
à no complexity

è PADEC
A Coq Framework to Prove Self-stabilizing Algorithms
in the Atomic State Model (ASM)

How to Gain Confidence into Distributed Algorithms?

3

The PADEC Project

• Goal: Formal proofs for self-stabilizing distributed algorithms
in the Atomic State Model (ASM)

• Formalism: Coq and its libraries as a foundation

PADEC provides a Coq library including:
• General tools
• Computational model and specifications
• Lemmas corresponding to common proof patterns
• Case-studies

«Preuves d’Algorithmes Distribués En Coq»

"Proofs of Distributed Algorithms using Coq"

4

The Coq Proof Assistant:
FuncAonal Programming and Formal Proofs

• Functional and formal language with mathematically defined semantics
• For definitions and proofs
• Interactive proof-editing
• Automated checking of formal proofs

Success Stories:
• System proofs: CompCert, certified C compiler
• Mathematical proofs: Feit-Thompson theorem

Coq uses the same formal language for programs and for proofs

proof
logical statement
proof checking
proving

program
type
type checking
programming

5

Instantiate Algorithm:
- State = a record of local var.
- run = a faithful translation

Express Assumption:
- Daemon e.g., weakly fair
- Network, e.g. rooted, bidir, connected

Express Specification:
- Self-stabilizing w.r.t. a problem e.g.,

BFS spanning tree
- Complexity, e.g. convergence requires

at most (Diameter+2) Rounds

Prove it!!

PADEC – Short How To

Algorithm

State

run

Network

NodeChannel

r

7

PADEC – Big Picture

Computa2onal Model
ASM Seman2cs

Assumptions
- Daemons
- Networks

Specification
- Self-Stabilization
- Problem
- Complexity: Steps, Rounds

Composi2on
- Hierarchical Collateral

Relational <->
Functional

Unfair, weakly fair,
synchronous

Connected, ring, tree
Iden8fied, (semi-)anonymous
Measures (distance, diameter)

Tools for convergence
Lexico, Well-founded,
Poten@al & mul@sets

Defini&ons

Induction Schema

BFS spanning tree
Token circulation
Dominating set, Clustering

Examples

Proof of
- Specification
- Complexity

Common proof patterns & results

Case studies

Dijkstra Token Ring (steps)
BFS spanning tree (rounds)

BFS + KClustering

Libraries:
Setoid support
Streams, LTL,
Counting

KDomSet, KClustering

8

Computational Model – ASM Semantics

𝛾! 𝛾" 𝛾#

Step Step

ConfiguraXon 𝛾!: Env (state of all nodes Env := Node -> State)

Atomic step - read local & neighbor variables à enabled?
- daemon selec9on
- node computa9on à update local variables

rela3on := Env -> Env -> Prop

ExecuXon Exec := Stream Env
such that (predicate is_exec: Exec -> Prop)
- Each two consecu9ve configura9ons are linked by
- if the stream is finite, the last configura9on is terminal

Step

Step

Streams

9

RelaAonal semanAcs <-> FuncAonal semanAcs

Relational semantics: an execution is defined by any e: Stream Env
such that is_exec e

Functional Semantics: defines an execution by
-> an initial configuration 𝛾 and
-> a daemon: selects the set of nodes to execute at each step,

defined as an (infinite) stream of selections
build_exec (𝛾: Env) (daemon: Daemon): Exec

Equivalence between both semantics:
• Soundness:

∀daemon 𝛾, is_exec (build_exec 𝛾 daemon).
• Completeness:

∀e, is_exec e →
∃daemon, e =~= build_exec (Head_of e) daemon.

10

Setoid support

Configurations are functions: 𝛾: Env and Env := Node -> State
In former implementations, configurations were lists of states.
=> Proof depends on the order of elements and repeats
=> heavy additional developments

Need: equality on functions
to be able to express 𝛾" is the same configuration as 𝛾#
𝛾" =~= 𝛾# <-> ∀x, 𝛾" x == 𝛾# x

Difficulty: Default Coq equality = Leibniz Equality
= proof (program) equality = intentional equality
not satisfactory for functions!!

Example:
(fun x => x) is not "Leibniz-equal to" (fun x => x + 0)

Reduced form for (fun x => x + O): (fun x => match x with O => O |
S x’ => S (x’ + O) end)

Reduced form for (fun x => x) is itself.
Not synctactically equal!! (upto renaming)

11

Setoid Support

⇒ In PADEC, every type has a user-defined equality.

• Base-type: equivalence rela3on on Node and State
• FuncXon type: e.g. Env := Node -> State

𝛾" =~= 𝛾# <-> ∀n n’: Node, 𝛾" n = 𝛾# n’
→ NOT reflexive in general!! Par3al equivalence rela3on

=> Proofs are restricted to proper objects, e.g. such that 𝛾 =~= 𝛾
=> Explicitlely defined func9ons have to be proved compa9ble

∀x y, x=~=y -> f x =~= f y

Other types that are incompaXble with Leibniz equality:
- Coinduc9ve types: Execu9ons Exec
- Comprehensions: e.g. natural numbers such that… {n: nat | … }
- …

Setoid Support:
Type classes mechanism → automa9on
Library for rela9ons on datatypes

12

Assumptions about Networks

Networks
- Basic proper9es (bidirec9onal, connected, rooted)
- Topologies (ring, tree)
- Measures (number of nodes, distance, diameter)

Counting
• Comparison of arbitrary set cardinalities

Witnessed by an injective functional relation between elements
• Counting of elements by comparison to {0, . . . , n − 1}
• Effect of set-theoretic operators on cardinality:

intersection, union, product,
set comprehension, inclusion,
singleton, empty set

=> Let n be the number of nodes …
=> Diameter is smaller that n
…
Express and prove results about Quantitative Properties and Complexities

13

AssumpAons about Daemons

Daemon – models the asynchronism in the ASM model
In PADEC: a predicate over execu9ons Exec -> Prop
Classical daemons are available in PADEC:

unfair, weakly fair, synchronous…

unfair e := True (* no constraint *)

weakly_fair e := (* a node which is enabled is eventually ac3vated or
neutralized, and this forever *)

∀ p, Always (fun e => EN p e -> Eventually (AN p) e) e

LTL Library
• Linear Temporal Logic
• Defines classical LTL Operators
• On Type Exec

14

SpecificaAon – Self-StabilizaAon

Defined w.r.t. a problem specification
SPEC: Exec -> Prop

self_stab SPEC :=
∃LC: Env -> Prop,
∀e,

Closure: if e starts in LC then
Always e remains in LC

Convergence: Eventually e
reaches LC

Specification: if e starts in LC then
SPEC e

Tools for Convergence :
- Lexicographic ordering,
- Well-foundedness,
- Potential & Multiset ordering

15

Tools for Convergence

Well-foundedness
prove that rela9on

outside LC and restricted to AssumpXons
is Well-Founded

(every decreasing sequence is finite)

PotenXal
Use a poten9al func9on Pot on configura9ons and a well-founded order < st:
∀ 𝛾" 𝛾#, 𝛾" 𝛾# -> Pot 𝛾# < Pot 𝛾"

Usually: aggrega9ng local poten3al values at all nodes
• Sum of poten9als at all nodes (integer values)
• Mul9set of poten9als at all nodes (arbitrary ordered values)

Step

Step

16

Tools for Convergence: Local Potentials

Multiset of potentials at all nodes

Finite Multiset ordering: [Dershowitz,Manna 1979]
To obtain M1 smaller than M2
• remove some copies of big values from M2
• replace them with any number of smaller values in M1

This finite multiset ordering is well-founded, (provided that the value ordering
relation is well-founded)
Coq Support: [CoLoR Library]

Local Potential (at each node)
Simplified criteria: during a step,
• potential must change at some node AND
• when a node increases its potential,

there must be another node with higher potential whose potential
decreases (alibi/scapegoat node)

Step

17

SpecificaAon – Problem - Complexity

Problems
- BFS spanning tree
- Token circulation
- K-Clustering and quantitative property on the number of clusters

Expressed in SPEC: Exec -> Prop

Complexity measures
- Steps (number of atomic steps in executions)
- Rounds

Dijkstra Token Ring (steps)

BFS spanning tree (rounds)

Induction Schema – e.g. (simplified):
P(n): Exec -> Prop e: Exec

If ∀e, ∀n ≤ B, P(n) e -> e reaches P(n+1) in at most one Steps/Rounds
If P(0) e holds
Then e reaches P(B) in at most B Steps/Rounds 18

Hierarchical Collateral ComposiAon

A1 assumes H1
is self-stabilizing w.r.t. SPEC1 and terminates (silent)

A2 shares variables with A1 but cannot overwrite them
assumes SPEC1
is self-stabilizing w.r.t. SPEC2

weakly fair daemon (so that A1 can converge)

Proof of specification: A1;A2 is self-stabilizing, w.r.t. SPEC2 assuming H1
(convergence is quite tricky)

Proof of complexity: (WIP)

A1;A2

19

Comments and Lessons

PADEC: a Coq Framework to prove Self-Stabilizing Algorithms

General Model: (not dedicated to a particular case)
Atomic State Model, Daemons, …
à Close to designer

Reasoning on formal proof: as close as possible of the pen&paper proof
à Get rid of generality using simplifying tools!

Generic powerful tools: counting, slices, graph properties…

Formal proofs: strengthen assumptions; develop new proofs
and sometimes bring new results!

20

PADEC

hSp://www-verimag.imag.fr/~alAsen/PADEC/

#loc = 96k (spec); 33k (proof); 7k (comments)

21

http://www-verimag.imag.fr/~altisen/PADEC/

