PADEC
Interactive Proof for
Self-Stabilizing Algorithms

Karine Altisen, Pierre Corbineau, Stéphane Devismes

UGA

Université
Grenoble Alpes UNIVERSITE
de . .

V Picardie
erimac

How to Gain Confidence into Distributed Algorithms?

Why? Complex statements:
Algorithms, Topologies, Scheduling assumptions...

Pen&paper Proof (usual practice)
Proof = artifact to convince of the validity of an assertion

From [Lamport, How to Write a 21st Century Proof, 2012]

“Proofs are still written in prose pretty much the way they were in the
17th century. [...]"

“Proofs are unnecessarily hard to understand, and they encourage
sloppiness that leads to errors.”

How to Gain Confidence into Distributed Algorithms?

Pen&paper Proof (usual practice) —> prone to error?
Test, Simulation - few pattern cases
Verification, e.g. Model-Checking - scaling

Machine-checked Proof (proof assistant) - heavy development
Challenges:
—> correctness, few convergence
- very few quantitative properties
- no complexity

=» PADEC
A Coq Framework to Prove Self-stabilizing Algorithms
in the Atomic State Model (ASM)

The PADEC Project

«Preuves d’Algorithmes Distribués En Coq»

"Proofs of Distributed Algorithms using Coq"

* Goal: Formal proofs for self-stabilizing distributed algorithms
in the Atomic State Model (ASM)

* Formalism: Cog and its libraries as a foundation

PADEC provides a Coq library including:
 General tools
 Computational model and specifications
 Lemmas corresponding to common proof patterns
e Case-studies

The Coq Proof Assistant:
Functional Programming and Formal Proofs

* Functional and formal language with mathematically defined semantics
* For definitions and proofs V

* Interactive proof-editing (.'J
* Automated checking of formal proofs

Success Stories:
e System proofs: CompCert, certified C compiler

 Mathematical proofs: Feit-Thompson theorem

Cog uses the same formal language for programs and for proofs

program proof
type logical statement

type checking p— proof checking
programming proving

PADEC - Short How To

Algorithm 1 Algorithm BFS, code for each node p.

Constant Local Input: p.neigh C Node; p.root € {t, f}

Local Variables: p.d € N; p.par € Node
Macros:
Dist, = min{q.d + 1,q € p.neigh}
Pargise = fst {q € p.neigh,q.d+ 1 = p.d}
Algorithm for the root(p.root = true)
Root Action: if p.d # 0 then
p.d is set to 0
Algorithm for any non-root node(p.root = false)
C'D Action: if p.d # Dist, then
p.d is set to Dist),
if p.d = Dist,, and p.par.d + 1 # p.d then
p.par is set to Pargie

C'P Action:

Algorithm
Network
State |¢e—>
Channel Node
run

Instantiate Algorithm:
- State = a record of local var.
- run = a faithful translation

Express Assumption:
- Daemon e.q., weakly fair
- Network, e.g. rooted, bidir, connected

Express Specification:

- Self-stabilizing w.r.t. a problem e.qg.,
BFS spanning tree

- Complexity, e.g. convergence requires
at most (Diameter+2) Rounds

Prove it!!

Definitions Common proof patterns & results

PADEC - Big Picture

Examples Case studies

Libraries:
Setoid support
Streams, LTL,

Computational Model
ASM Semantics

Counti
S Relational <->
Functional
Assumptions \ 4 Composition
- Daemons Specification - Hierarchical Collateral
- Networks - Self-Stabilization

~\

/\— Problem =
- Complexity: Steps, Rounds CC
Unfair, weakly fair, - Specification
synchronous - Complexity
In ion Schema '
Connected, ring, tree duct O_ 5 BFS + KClustering
Identified, (semi-)anonymous BFS spanning tree (rounds)
Measures (distance, diameter) Dijkstra Token Ring (steps)
Tools for convergence
l Lexico, Well-founded,
BFS spanning tree Potential & multisets

Token circulation

Dominating set, Clustering KDomSet, KClustering

Computational Model — ASM Semantics

P P ey -
Yo V1 Y2

Configuration y;: (state of all nodes)

Atomic step - read local & neighbor variables = enabled?
- daemon selection
- node computation = update local variables

relation SEERS, - —> —-> Prop

Execution -= Stream Streams

such that (predicate is exec: -> Prop)
- Each two consecutive configurations are linked by =>£ER3
- if the stream is finite, the last configuration is terminal

Relational semantics <-> Functional semantics

Relational semantics: an execution is defined by any e: Stream
suchthatis exec e

Functional Semantics: defines an execution by
-> an initial configuration y and
-> a daemon: selects the set of nodes to execute at each step,
defined as an (infinite) stream of selections
build exec (y:) (daemon:) ¢

Equivalence between both semantics:
* Soundness:
Vdaemon y, 1is exec (builld exec y daemon).
 Completeness:
Ve, 1s exec e -

ddaemon, e =~= bulld exec (Head of e) daemon.

10

Setoid support

Configurations are functions: y : and : = ->
In former implementations, configurations were lists of states.
=> Proof depends on the order of elements and repeats
=> heavy additional developments

Need: equality on functions
to be able to express y is the same configuration as y4

Yo =~= V1 <> VX, Y9 X == Y1 X

Difficulty: Default Coq equality = Leibniz Equality
= proof (program) equality = intentional equality
not satisfactory for functions!!

Example:
(fun x => x) isnot"Leibniz-equalto” (fun x => x + 0)

Reduced form for (fun x => x + 0): (fun x => match x with O => 0O |
S x" => S (x' + 0O) end)

Reduced form for (fun x => x) isitself.

Not synctactically equal!! (upto renaming) .

Setoid Support

= In PADEC, every type has a user-defined equality.

* Base-type: equivalence relation on and
* Function type: e.g. s = ->
Yo =~= VY1 <-> Vn n’: Node, Yo n = y1 n'’

— NOT reflexive in general!! Partial equivalence relation
=> Proofs are restricted to proper objects, e.g. such thaty =~

=> Explicitlely defined functions have to be proved compatible
Vx vy, x=~=y -> f x =~= f vy

Other types that are incompatible with Leibniz equality:
- Coinductive types: Executions
- Comprehensions: e.g. natural numbers such that... {n: nat

Setoid Support:
Type classes mechanism = automation
Library for relations on datatypes

14

12

Assumptions about Networks

Networks

- Basic properties (bidirectional, connected, rooted)
- Topologies (ring, tree)

- Measures (number of nodes, distance, diameter)

Counting in.
 Comparison of arbitrary set cardinalities

Witnessed by an injective functional relation between elements
e Counting of elements by comparison to {0, ..., n - 1} S i,
* Effect of set-theoretic operators on cardinality:
intersection, union, product,
set comprehension, inclusion,
singleton, empty set

=> Let n be the number of nodes ...
=> Diameter is smaller that n

Express and prove results about Quantitative Properties and Complexities
13

Assumptions about Daemons

Daemon — models the asynchronism in the ASM model
In PADEC: a predicate over executions -> Prop

Classical daemons are available in PADEC:
unfair, weakly fair, synchronous...

unfair e := True (* no constraint *)
weakly fair e := (*anode which is enabled is eventually activated or

neutralized, and this forever *)
Vp, Always (fun e => EN p e -> Eventually (AN p) e) e

LTL Library

* Linear Temporal Logic

* Defines classical LTL Operators
* On Type Exec

14

Specification — Self-Stabilization

4 /\/F///I

1 ronsi B
TCawlls

Tools for Convergence :

Lexicographic ordering,
Well-foundedness,
Potential & Multiset ordering

Defined w.r.t. a problem specification
SPEC -> Prop

self stab SPEC :=
dL.C: Env -> Prop,
Ve,

Closure: if e starts in L.C then
Always e remainsin LC

Convergence: Eventually e
reaches L.C

Specification: if e starts in L.C then
SPEC e

15

Tools for Convergence

Well-foundedness
prove that relation
outside I.C and restricted to Assumptions
is Well-Founded
(every decreasing sequence is finite)

Ste

Potential
Use a potential function Pot on configurations and a well-founded order < st:

VYoY1, Yo 2EERY y; -> Pot y; < Pot Y

Usually: aggregating local potential values at all nodes
 Sum of potentials at all nodes (integer values)
 Multiset of potentials at all nodes (arbitrary ordered values)

16

Tools for Convergence: Local Potentials

Multiset of potentials at all nodes

Finite Multiset ordering: [Dershowitz,Manna 1979
To obtain M1 smaller than M2
* remove some copies of big values from M2
* replace them with any number of smaller values in M1

This finite multiset ordering is well-founded, (provided that the value ordering
relation is well-founded)

Coq Support: [CoLoR Library|

Local Potential (at each node)
Simplified criteria: during a step, =tSR3
e potential must change at some node AND
 when a node increases its potential,
there must be another node with higher potential whose potential
decreases (alibi/scapegoat node)

17

Specification — Problem - Complexity

Problems
- BFS spanning tree
- Token circulation
- K-Clustering and quantitative property on the number of clusters

Expressed in SPEC -> Prop

Complexity measures
- Steps (humber of atomic steps in executions) Dijkstra Token Ring (steps)
- Rounds BFS spanning tree (rounds)

Induction Schema — e.g. (simplified):
P(n) : -> Prop e:

If Ve,Vn<B, P(n) e -> ereaches P (n+1) in at most one Steps/Rounds
If P(0) e holds
Then e reaches P (B) in at most B Steps/Rounds 1

Hierarchical Collateral Composition

Al assumes H1
is self-stabilizing w.r.t. SPEC1 and terminates (silent)

A2 shares variables with A1 but cannot overwrite them
assumes SPEC1
is self-stabilizing w.r.t. SPEC2

Al;A2—

weakly fair daemon (so that A1 can converge)

Proof of specification: A1;A2 is self-stabilizing, w.r.t. SPEC2 assuming H1
(convergence is quite tricky)

Proof of complexity: (WIP)

19

Comments and Lessons

PADEC: a Coq Framework to prove Self-Stabilizing Algorithms
General Model: (not dedicated to a particular case)
Atomic State Model, Daemons, ...

— Close to designer

Reasoning on formal proof: as close as possible of the pen&paper proof
- Get rid of generality using simplifying tools!

Generic powerful tools: counting, slices, graph properties...

Formal proofs: strengthen assumptions; develop new proofs
and sometimes bring new results!

20

PADEC

http://www-verimag.imag.fr/~altisen/PADEC/

#loc = 96k (spec); 33k (proof); 7k (comments)

PADEC
Coq Library

PADEC - Coq Library

roc

wm Model and General Results about the Model

Token Ring

« Algorithm: network and algorithm definitions

« RelModel: semantics of the model (relational version)

* FunModel: semantics of the model (functional version and equivalence wrt relational semantics)
BFS « Exec: execution of the system (type and support)

« Self_Stabilization: definition of the properties

« Fairness: definition of scheduling assumptions (daemon)

K-Dominating Set

K-Clustering

PADEC Index

Bl Tool for Termination or Convergence

Back to Main

« P_Q_Termination: tools for proving convergence of an algorithm. Relies on the Dershowitz-Manna order on finite multi-sets to define sufficient conditions on local potentials. In those tools,
we use CoLoR Libray.

Tools for Composition

« Composition: collateral composition - definition, proof of correctness under weakly fair assumptions
« Compo_ex: example on how to use the composition operator, based on "Self-Stabilizing Small k-Dominating Sets"

Tools for Complexity

* Steps: step complexity. Tools to measure stabilization times (and other performances) in steps. Relies on Stream_Length 2 1

http://www-verimag.imag.fr/~altisen/PADEC/

