Faithful Simulation of
Randomized BFT Protocols

on Block DAGs

Hagit Attiya Constantin Enea Shafik Nassar

Technion Ecole Polytechnique Technion
Israel France Israel

CONCUR 2023

Objective

* Exploit blockchain-like concepts for efficient implementations of
randomized distributed protocols

® Building on [Schett, Danezis, PODC'21] for deterministic protocols

* Correctness specifications and their guarantees

Plan

* Motivation
®* Private-coin block DAG implementations

* Proving their correctness

Correctness: Contextual Refinement

Preserving a property ¢ in a given class in the context of every Program

i Program | ~ Program

F@

Protocol

Abstract s q
IZ (p Implementatiog.//

Standard trace inclusion (refinement):
Traces(Program X Imp) < Traces(Program X Abs)

E.g., linearizability preserves safety properties in any program
[Herlihy, Wing][Filipovic, O'Hearn, Rinetzky, Yang]

Correctness: Contextual Refinement

Preserving a property ¢ in a given class in the context of every Program

i Program | ~ Program

Abstract : q
Protocol |: (p Implementatiog_//

F@

Standard trace inclusion (refinement):
Traces(Program X Imp) < Traces(Program X Abs)

Does not preserve hyperproperties

Example: Binary Crusader Agreement

Binary crusader agreement (BCA) is a weak
form of consensus, where processes start with 0 1
valuesin {0,1} and return valuesin {0, 1, 1} O O
* Onsame or adjacent vertexes (agreement)

* [fall start with v, decide on v (validity)
[Dolev, 1982]

More in BA with Welch @ Thursday

Randomized Consensus with BCA

Binary crusader agreement (BCA) is a weak Input: z
form of consensus, where processes start with ~ 1: » := 0; est := z;
valuesin {0,1} and return valuesin {0, 1, 1} 2: while true do
3: r+—+;
Every process goes through a sequence of 4 wal :=[r.BCA(est);
(asynchronous) rounds, each with 5. c:=r|Toss();
one instance of BCA & 6: if val # T and ¢ = val then
one instance of Common Coin Toss & output val;
8: est := wval,;
Common Coin Toss: all processes get the same . else if val # 1 then
output in {0,1} and it is unpredictable 10: est := val;
11: else
12: est := c;

Randomized Consensus with BCA

Positive almost-sure termination: termination Input: z

2: while true do

r++;

val := r.BCA(est);

c := r.Toss();

if val # 1 and ¢ = val then
output val;
est := val;

else if val # 1 then
est := val;

else

with probability 1 and in an expected finite L 1 :=0; est ==,
number of steps (a hyperproperty) N
4:
Program 5
Binary Positive 6:
Crusader almost-sure 7
Agreemen termination 8:
9:
10:
11:
12:

est := c;

With a Distributed BCA Implementation

Input: x

1: r:=0; est := x;
2: while true do

Start the round with 3:
different estimates 4:

r. BCA(0) i r. BCA(1) %
= | 6:
r.Toss() i £
8:

o 9:
10:

11:

12:

r++;
val := r.BCA(est);
¢ := r.Toss();
if val # 1L and ¢ = val then
output val;
est := val;
else if val # 1 then
est := val;
else
est := c;

With a Distributed BCA Implementation

Input: x

1: r:=0; est := x;
2: while true do

Start the round with 3:
different estimates 4:
r. BCA(0) i r. BCA(1) %
=> | 6:
7:

r.Toss()
= x Scheduler (adversary) 8:
-~ 1.x exploits undefined 9:
return value 10:
11:
12:

r++;

val :=|r.BCA(est);

¢ := r.Toss();

if val # 1L and ¢ = val then
output val;

est := val;

else if val # 1 then
est := val;

else
est := c;

With a Distributed BCA Implementation

Input: x
1: 7 :=0; est := x;
2: while true do
Start the round with 3: T+

different estimates 4: val :=|r.BCA(est);
r. BCA(0) r. BCA(1) o c := r.Toss();
- | 6: if val # 1L and ¢ = val then
7 output val;
r.Toss()
. I Scheduler (adversary) 8: est := val;
—>1.x exploits undefined 9: else if val # | then
return value 10: est := val;
r.Toss()
11: else
=2 X
est = x ! * est=1-x 12: est = ¢;

End the round with
different estimates

Binding BCA

When an execution prefix ends in a process Input: z
returning L, there is a single non-_L value that 1: 7= 0: est — -
cr =05 est := x;

can be returned by a process in any extension 5. while true do
[Abraham, Ben-David, Yandamuri]

Start the round with 3: r+-+;
different estimates 4: val :=|r.BCA(est);
r. BCA(0) r. BCA(1) o c := r.Toss();
- | 6: if val # 1L and ¢ = val then
7 output val;
r.Toss()
. I Scheduler (adversary) 8: est := val;
—>1.x exploits undefined 9: else if val # | then
return value 10: est := val;
r.Toss()
11: else
=2 X
est = x ! * est=1-x 12: est 1= ¢;

End the round with
different estimates

Binding BCA

When an execution prefix ends in a process Input: z
returning L, there is a single non- L value that 1: 7= 0: est = o
cr = 0 = x;

can be returned by a process in any extension 5. while true do
[Abraham, Ben-David, Yandamuri PODC'22] I

val :=|r.BCA(est);
¢ := r.Toss();
if val # 1 and ¢ = val then
output val;
est := val;
else if val # 1 then
10: est := val;

‘ Program

Binary Positive
Crusader ‘ almost-sure
Agreement termination

11: else
This is a hyperproperty 12: est := c;

Binding BCA

Any implementation of a binding BCA should satisfy binding as well in
order to guarantee termination of the consensus algorithm

Program ~ Program
Binary Positive Positive
Crusader “ I: almost-sure» almost-sure
Agreement termination termination

Preservation of binding can be guaranteed through forward simulations
[Attiya&Enea][Dongol Schellhorn,Wehrheim]

Plan

* Motivation
®* Private-coin block DAG implementations

* Proving their correctness

Block DAG Implementations

p Q R [Schett, Danezis, PODC'21]

\‘QQ Protocol behavior = DAG of compute nodes

*—

Ordered by Lamport’s happens-before relation

o
e

A block DAG implementation = Agree on a joint DAG + Interpret DAG based
on a protocol P (can use the same DAG to interpret multiple protocols)

Tolerates Byzantine failures

Blocks: Terminology

P Q R owner

S

K @ parent
/.\ owner: process id
K/

parent: hash of previous block generated by owner
e

preds: hashes of blocks # ancestors of the parent

data: inputs, shared objs. return values, random string

Implementation of a protocol P

Local state: set of valid blocks (the joint DAG)
+ interpretations of blocks w.r.t. P (protocol configurations)

Generate block (based on the current joint DAG)
IT new blocks are received, interpret them according to P

Exchange blocks

Interpretation of Blocks

P Q R owner

‘Preds ‘\
\ reds
\\ ‘parent

e Compute new local state of R:

- Based on its state in parent

- Receiving messages sent in compute steps of
preds

- Using inputs, random choices, shared objects,
return values in data

Exchanging Blocks

Guarantee: if some correct process adds a block to its DAG, then every correct
process eventually adds the same block

* Every block is signed (Byzantine failures) before being broadcasted

* Ablock is valid if it is correctly signed and all its predecessors are valid
(ensures acyclicity)

* If a predecessor block is missing, send a forwarding request (pull) to its owner

Plan

* Motivation
®* Private-coin block DAG implementations

®* Proving their correctness

Labeled Transition Systems (LTSs)

Model nondeterministic protocols as Labeled Transition Systems (LTSs)
[Keller, CACM'76]

State

Local variables of .
each thread Call M(i QLM('). teP—from,M---
Channel buffers
Call M'(i @ Step from M’ @ Return M’(i)

Labeled Transition Systems (LTSs)

Model nondeterministic protocols as Labeled Transition Systems (LTSs)
[Keller, CACM'76]

State

Local variables of .
each thread Call M(i QLM('). teP—from,M---
Channel buffers
Call M'(i @ Step from M @ Return M’(i)

external actions

Labeled Transition Systems (LTSs)

Trace (history): sequence of external actions in an execution of the LTS
Trace inclusion: For an implementation Imp and an abstract protocol Abs

Traces(Imp) < Trace(Abs)

Forward Simulation for LTSs

Prove trace inclusion by induction via a simulation relation between

states of implementation and abstract protocols

. [Lynch, Vaandrager, 1996]

isl is2

) A o
Forward simulation S|mI

ssl

Forward Simulation for LTSs

Prove trace inclusion by induction via a simulation relation between

states of implementation and abstract protocols
[Lynch, Vaandrager, 1996]

isl is2

Forward simulation Sim : :Sim

o 0

Forward Simulation for LTSs

Prove trace inclusion by induction via a simulation relation between

states of implementation and abstract protocols
[Lynch, Vaandrager, 1996]

isl is2

Forward simulation Sim : :Sim

o 0

Preserve hyperproperties w.rt deterministic scheduler (strong adversary) in every context
[Attiya, Enea][Dongol, Schellhorn, Wehrheim]

For randomized protocols, include probabilities in transition labels
= weak probabilistic simulation [Segala, cONCUR'95] which has same guarantees

Main Transitions in Block-DAG

validateBlock(i = j): p; validates a block issued by p;

compute(i,p): p; produces and disseminates a new block with p as its randomness, and
then interprets the new block (and other previously uninterpreted blocks)

sendFWD(i = j) p; pulls (requests a block) from p;
replyFWD(j = i) denotes a transition where p; responds with a block to p;

deliverBlocks(i = j) all the blocks in the output buffer i - j are moved to the input
bufferi = |

indicate(i, w) a response w from shared service is returned to p;

Theorem. There is a forward simulation from the block DAG
implementation of a protocol P to the original protocol P (as LTSs)

Proof idea: Relate configurations of the block DAG

implementation with configurations of the original protocol:

* |ocal state of process p = local state derived by interpreting the most
recent block issued by p

®* messages in transit from p to g: sent by interpreting a block issued
by p which is not yet validated by g

Conclusion

* A block DAG implementation of randomized distributed protocols,
which extends the deterministic one [Schett, Danezis, PODC'21]

* Faithfulness of the implementation = forward simulations
(preserving trace distributions, or hyperproperties)

Future Work:
* Private-coin DAG-based protocols
e Other cryptographic protocols

