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How we do it
1. Stewarding critical software components

2. Conducting security audits to key projects

3. Securing chains by reliably validating 



How we do it: #1 stewarding

11
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

application layer

Application Blockchain 
Interface (ABCI)

key to handle a large 
number of validatorstolerant to Byzantine peers

BFT State Machine 
Replication 

typically CometBFT, an 
implementation of 

Tendermint

local applications, e.g., 
the staking module

also distributed applications, 
e.g., the token transfer app



How we do it: #1 stewarding

11
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

application layer

Application Blockchain 
Interface (ABCI)

key to handle a large 
number of validatorstolerant to Byzantine peers

BFT State Machine 
Replication 

typically CometBFT, an 
implementation of 

Tendermint

local applications, e.g., 
the staking module

also distributed applications, 
e.g., the token transfer app ⭐



How we do it: #1 stewarding

11
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

application layer

Application Blockchain 
Interface (ABCI)

key to handle a large 
number of validatorstolerant to Byzantine peers

BFT State Machine 
Replication 

typically CometBFT, an 
implementation of 

Tendermint

local applications, e.g., 
the staking module

also distributed applications, 
e.g., the token transfer app ⭐

⭐



…

12
COSMOS HUB

OSMOSIS
INJECTIVE

Inter-blockchain Communication 
Protocol (IBC)

IBC

Fungible Token Transfer

Interchain Security

Pub-sub Service

Relayer

REGEN

How we do it: #1 stewarding



…

12
COSMOS HUB

OSMOSIS
INJECTIVE

Inter-blockchain Communication 
Protocol (IBC)

IBC

Fungible Token Transfer

Interchain Security

Pub-sub Service

Relayer

REGEN

How we do it: #1 stewarding

⭐



…

12
COSMOS HUB

OSMOSIS
INJECTIVE

Inter-blockchain Communication 
Protocol (IBC)

IBC

Fungible Token Transfer

Interchain Security

Pub-sub Service

Relayer

REGEN

How we do it: #1 stewarding

⭐

⭐



…

12
COSMOS HUB

OSMOSIS
INJECTIVE

Inter-blockchain Communication 
Protocol (IBC)

IBC

Fungible Token Transfer

Interchain Security

Pub-sub Service

Relayer

REGEN

How we do it: #1 stewarding

⭐

⭐

⭐



How we do it: #2 security audits

13



How we do it: #2 security audits

We offer code review, and protocol design 
services: protocol design, formalization and 

analysis

13



How we do it: #2 security audits
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make distributed systems secure and resilient
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How we do it: protocol design service
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E.g., a client has a formalized protocol and want 
help checking its correctness

We deliver a correctness artifact produced via 
different methods that provide different levels of trust

Simulations using executable specs, model-checking 
or pencil-and-paper mathematical analysis 
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Proof-of-Stake validation and IBC relaying on 
major networks

This means that we participate in consensus 
on major blockchains and relay packets 
between them for chain interoperability
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We adopt the “model first” approach 

Where formal models are first-class artifacts in the 
software development process

We apply it both in the projects we steward, and in the 
security audits that involve protocol design and analysis
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PODC/DISC style
TLA+ 
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Only experts, with very a specific background 
can do it

We want engineers and auditors to formalize 
and analyze their own protocols
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An executable specification language design for 
usability 

Combines the robust theoretical basis of TLA - it is 
in a way a new skin for TLA+

With state-of-the-art static analysis and 
development tooling
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Least surprise: copy syntax from mainstream languages

Easy to read: keeps the set of ASCII control characters to 
minimum, eliminates ambiguity, types

Easy to write and parse: a small set of syntactic rules (250 
LOC)

(Mostly) compatible with TLA+

Command line-first: IDEs change, CLI tools stay
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•Layered language: it introduces "modes", which are similar in 
spirit to TLA+ levels, but more refined

•Types are built-in

•Folds instead of recursive operators

•Isolates non-determinism
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pure val MAX_UINT = 2^256 - 1

pure def sumOverBalances(balances) = {
    balances.keys().fold(0,
       (sum, a) => sum + balances.get(a))
}
var state: Erc20State
val totalSupplyInv = isTotalSupplyCorrect(state)

Pure and stateful definitions

pure = stateless definitions

var = state variable

val = stateful definition
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run transferFromWhileApproveInFlightTest = {

  all {

    erc20State' = newErc20("alice", 91),

    mempool' = Set(), lastTx' = NoneTx,

  } // alice sets a high approval for bob

  .then(submit(ApproveTx("alice", "bob", 92)))

  // bob immediately initiates his transaction

  then(submit(TransferFromTx("bob", "alice", "eve", 54)))

  // alice changes her mind and lowers her approval to bob

 …

}

Runs A run represents a finite 
execution

Sequence of actions

Think about tests: unit tests 
and property-based



Layered language

31

Temporal



Layered language

31

temporal noOverheat =
  always(temperature <= 100)

temporal eventuallyOff =
  eventually(not(heatingOn))

Temporal



Layered language

31

temporal noOverheat =
  always(temperature <= 100)

temporal eventuallyOff =
  eventually(not(heatingOn))

Temporal

Temporal properties



Layered language

31

temporal noOverheat =
  always(temperature <= 100)

temporal eventuallyOff =
  eventually(not(heatingOn))

Temporal

Temporal properties

Describe infinite 
executions
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  (0 <= i and i <= MAX_UINT)
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// type aliases

type Address = str

type Uint = int

// variables must have a type annotation

var mempool: Set[Transaction]

// operators may have a type annotation

pure def isUint(i: int): bool =

  (0 <= i and i <= MAX_UINT)

// a record type

type Erc20State = {

  // a map of addresses to amounts

  balanceOf: Address -> Uint,

  // the sum of all balances

  totalSupply: Uint,

  // a map of pairs to amounts

  allowance: (Address, Address) -> Uint,

  // the address of the contract creator

  owner: Address,

}
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Iteration over sets 

//iterates in some order 

//always terminates 

//size(..) iterations
pure def sumOverBalances(balances) = {
    balances.keys(). 
fold(0, (sum, a) => sum + balances.get(a))

Iteration over lists 

//always terminates 

//len(..) iterations

pure def simpleHash(word) =
  word.foldl(0, (i, j) => i + j) % BASE
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Instant feedback on

syntax, types, mode and 
effects errors
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We can use the run command to execute a Quint specification via 
random simulation similar to stateful property-based testing

In other words, check invariants in —max-samples random 
executions up to —max-steps each

quint run —invariant=myInvariant —verbosity=3 myspec.qnt
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Two special actions:

• init: modifies all state variables, 
reads none

• step: modifies all state 
variables, may read some

Ways of inserting non-determinism

•oneOf(S) randomly selects a set 
element

•any { A1, …, An } randomly 
selects an action 

action step =

  any {

    nondet sender = oneOf(ADDR)

    nondet amount = oneOf(AMOUNTS) 

    nondet toAddr = oneOf(ADDR)

    any {

      DepositTx(sender, amount),

      TransferTx(sender, toAddr, amount),

      …

    }

  }
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Random simulator
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The simulator tries to find the shortest trace that violates the 
invariant

If it finds one, it outputs the trace

If it does not find a violating trace, it outputs the longest sample 
trace that the simulator has found during the execution
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We can use the test 
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  } // alice sets a high approval for bob

  .then(submit(ApproveTx("alice", "bob", 92)))

  // bob immediately initiates his transaction

  then(submit(TransferFromTx("bob", "alice", "eve", 54)))

  // alice changes her mind and lowers her approval to bob

 …

}
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The Quint team is working on integrating the Apalache model 
checker to verify Quint specifications

Goal: check invariants for all executions up to —max-steps

Apalache is our in-house symbolic model checker

The Quint team has already been able to check a 
Tendermint Quint specification!
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To design new protocols or features from scratch

To formalize existing protocols: from code or 
documentation 

To find bugs in existing implementations (audits)

Quint specs have shown potential for onboarding as well
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Conclusions

52

Our goal is that “anyone” can formalize and check their 
protocols

The Quint language and the tools around it aim at enabling 
this

By having a syntax that’s similar to programming 
languages and providing an experience similar to what 

software development looks for engineers



Thanks! 
 

manuel@informal.systems
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