Formal modeling at
Informal Systems

Manuel Bravo <manuel@informal.systems>

mailto:manuel@informal.systems

iNformal

What we do

What we do

We help to build confidence in the
Cosmos ecosystem (aka the interchain)

Wait, what’s the interchain?

The interchain: the Internet of Blockchains

A network of blockchains able to communicate
with each other in a decentralized way

_ INJECTIVE
I oo /
AGORIC

2

COSMOS HUB

The interchain: the Internet of Blockchains

248+ apps and services

/ INJECTIVE

‘ I REGEN

COSMOS HUB

l OSMOSIS\

AGORIC

Distributed protocols everywhere!

The interchain: the Internet of Blockchains

v,

w
‘ SMO ~ &L

The interchain: the Internet of Blockchains

A

-

OSMOSIS

-
<

|lVE

The interchain: the Internet of Blockchains

p2p layer

key to handle a large
number of validators

COSMOS HUB
7

The interchain: the Internet of Blockchains

p2p layer

key to handle a large
tolerant to Byzantine peers number of validators

COSMOS HUB
7

The interchain: the Internet of Blockchains

consensus layer

p2p layer

key to handle a large
tolerant to Byzantine peers number of validators

COSMOS HUB
7

The interchain: the Internet of Blockchains

BFT State Machine
Replication
p2p layer

key to handle a large
tolerant to Byzantine peers number of validators

COSMOS HUB
7

The interchain: the Internet of Blockchains

typically CometBFT, an consensus layer .
implementation of BFT Iftatl.e M.achme
- eplication
Tendermint 52p layer o

key to handle a large
tolerant to Byzantine peers number of validators

COSMOS HUB
7

The interchain: the Internet of Blockchains

application layer

consensus layer

typically CometBFT, an
yYRIeaY BFT State Machine

Replication

implementation of
Tendermint

p2p layer

key to handle a large
tolerant to Byzantine peers number of validators

COSMOS HUB
7

The interchain: the Internet of Blockchains

application layer

typically CometBFT, an consensus layer

implementation of
Tendermint

BFT State Machine

oo | Replication
p2p layer

key to handle a large
tolerant to Byzantine peers number of validators

COSMOS HUB
7

The interchain: the Internet of Blockchains

application layer
local applications, e.g.,

typically CometBFT, an consensus layer

BFT State Machine
Replication

implementation of
Tendermint

p2p layer

key to handle a large
tolerant to Byzantine peers number of validators

COSMOS HUB
7

The interchain: the Internet of Blockchains

application layer
also distributed applications, local applications, e.g.,

e.g., the token transfer app - the staking module

typically CometBFT, an consensus layer

implementation of
Tendermint

BFT State Machine

oo | Replication
p2p layer

key to handle a large
tolerant to Byzantine peers number of validators

COSMOS HUB
7

The interchain: the Internet of Blockchains

v,

w
‘ SMO ~ &L

The interchain: the Internet of Blockchains

3 M ((\

The interchain: the Internet of Blockchains

Inter-blockchain Communication
Protocol (IBC)

REGEN

COSMOS HUB

The interchain: the Internet of Blockchains

Inter-blockchain Communication
Protocol (IBC)

4/‘?*

REGEN

COSMOS HUB
9

The interchain: the Internet of Blockchains

Inter-blockchain Communication
Protocol (IBC)

A o

COSMOS HUB W relayer

9

The interchain: the Internet of Blockchains

Fungible Token Transfer

Inter-blockchain Communication
Protocol (IBC)

. lA REGEN
COSMOS HUB W relayer

9

The interchain: the Internet of Blockchains

Interchain Security

Fungible Token Transfer

Inter-blockchain Communication
Protocol (IBC)

lA REGEN
COSMOS HUB W relayer

9

The interchain: the Internet of Blockchains

Pub-sub Service

Interchain Security

Fungible Token Transfer

Inter-blockchain Communication
Protocol (IBC)

lA REGEN
COSMOS HUB W relayer

9

What we do

We help to build confidence in the
Cosmos ecosystem (aka the interchain)

10

What we do

We help to build confidence in the
Cosmos ecosystem (aka the interchain)

How we do it

10

What we do

We help to build confidence in the
Cosmos ecosystem (aka the interchain)

How we do it

1. Stewarding critical software components

10

What we do

We help to build confidence in the
Cosmos ecosystem (aka the interchain)

How we do it

1. Stewarding critical software components

2. Conducting security audits to key projects

10

What we do

We help to build confidence in the
Cosmos ecosystem (aka the interchain)

How we do it

1. Stewarding critical software components
2. Conducting security audits to key projects
3. Securing chains by reliably validating

10

How we do it: #1 stewarding

ITe

- N N
3K DK)
. v NV

Application Blockchain
Interface (ABCI) -

ei-B, - consensus layer
jon of BFT Stc

Nt Replic
p2p layer) ‘ i

-~ OSNA

oo

| key to handle a'large;;,
[l folerdlili® By.zantine peer: e : numbe; alidators

\ ¥ 4 |

- W REGEN

How we do it: #1 stewarding

COSMOS HUB
11

How we do it: #1 stewarding

COSMOS HUB
11

How we do it: #1 stewarding

Interchain Security

Inter-blockchain Communication
Protocol (IBC)

COSMOS HUB W relayer

12

How we do it: #1 stewarding

Interchain Security

Inter-blockchain Communication

® 2

COSMOS HUB W relayer

12

How we do it: #1 stewarding

Interchain Security

Inter-blockchain Communication

V) N

COSMOS HUB el
OSHUE @y

How we do it: #1 stewarding

* Interchain Security

Inter-blockchain Communication

Relayer

How we do it: #2 security audits

How we do it: #2 security audits

We ofter code review, and protocol design
services: protocol design, formalization and
analysis

How we do it: #2 security audits

We ofter code review, and protocol design
services: protocol design, formalization and
analysis

We leverage formal methods and tools to
make distributed systems secure and resilient

13

How we do it: protocol design service

How we do it: protocol design service

E.g., a client has a protocol and want help
formalizing it

How we do it: protocol design service

E.g., a client has a protocol and want help
formalizing it

We produce a specification artifact that includes
a formal specification with a set of desired
properties and make assumptions explicit

14

How we do it: protocol design service

How we do it: protocol design service

E.g., a client has a formalized protocol and want
help checking its correctness

How we do it: protocol design service

E.g., a client has a formalized protocol and want
help checking its correctness

We deliver a correctness artifact produced via
different methods that provide different levels of trust

15

How we do it: protocol design service

E.g., a client has a formalized protocol and want
help checking its correctness

We deliver a correctness artifact produced via
different methods that provide different levels of trust

Simulations using executable specs, model-checking
or pencil-and-paper mathematical analysis

15

How we do it: #3 securing chains

How we do it: #3 securing chains

Proof-of-Stake validation and IBC relaying on
major networks

How we do it: #3 securing chains

Proof-of-Stake validation and IBC relaying on
major networks

This means that we participate in consensus
on major blockchains and relay packets
between them for chain interoperability

16

Our approach

Our approach

We adopt the “model first” approach

Our approach

We adopt the “model first” approach

Where formal models are first-class artifacts in the
software develop Orocess

Our approach

We adopt the “model first” approach

Where formal models are first-class artifacts in the
software development process

We apply it both in the projects we steward, and in the
security audits that involve protocol design and analysis

17

Formal modeling and protocol
analysis at Informal Systems

How we’ve done it so far

How we’ve done it so far

PODG/DISG style

Proposer-Based Time - Part |

System Model

Time and Clocks

& PETS-CLOCK-NEWTON 0}
Thare is 3 reference Newtonan real-time t (UTC)

Every cormect valkdator ¥ maintans & synchronaed clock C ¥ that ensures:

(PBTS-CLOCK-PRECISION O]

There axists & system parameter PRECISION such that for any two cormect walidators ¥V and ¥, and at any real-time 1 |
W) = € Wit)] « mECISIon

Message Delays

We 00 not want 1o merfere with the Tenderment tming assumplions. We wil Dostiulate a timing restrclion, whech, If satisfed ensures that
veress & preserved.

In general the local clock may drift from the global tme. (T may progress faster, € 0. 0% Second of clock time maght teke 1005 seconds of
real-tema). As 3 result the local clock and the global clock may be measured In different time units. Usualy. the message celay s measured
" gobal clock tme units. To estimane the correct local timeout precisely. we would need 10 estimale the clock time duration of & message

delay taking into acoount the clock drift. For smplcity we ignore s, and deectly postuiate the message delay assamption in terms of oca
e,

How we’ve done it so far

TLA*

e Lines 40
o (PRTS-ALGNEW-PEVOTE.0)
UpoafroposalinPrevotedrCommitAndPrevote(p) ==

WMEv NI Yaliavalwes, Tt \In Tisestamps, vr \in RounasOrNiL:

PODG/DISG style

Proposer-Based Time - Part | A\ steplp) \in ("PREVOTE®, “PRECOMMIT®) \» Line 34
I\ LET m5g »»
System Model Asisgl [type |~» “PROPOSAL", src |-» Proposeriroundip)),
rownd |-> roundip], proposal |-> Propesaliv, t), valigRound |-> vr]) IN
Yime and Clocks I\ <<p, 8> \In receivedTinelyProposal \» wpdated Line 36

A\ LET PV »= { » \In msgsPrevote(rowmdipl]: .10 » Ja(Proposallv, t)))} IN
A Cardimalityl(P¥) »= THRESMOLDZ \» Line 3%
There Is 2 reference Newtonan real-time t (UTC) /\ evidence' = PV ‘\union {msg)} ‘\union evidence
/\ IF steplp] = “PREVOTE"
THEN \» Lines 3J8-41:

& [PBTS-CLOCK-NEWTON 0)

Ewvery cormect validatior ¥V maintans & synchronaed clock C W that ensures

(PBTS-CLOCK-PRECISION.O) /A lockesvalue' = [lockegvalue EXCEPT !lp) = v)
There axists & system parameter PRECISTON such that for any two cormect validators V and W, and at any real-time 1 . M\ lockedound® = [lockedound EXCEPT !(p) = roundipl)
[C W) = € Wit)]| « MECISIoN A\ BroadcastPrecommitip, roundipl, 1d(Propesaliv, t)))

/\ step’ » [step EXCEPT ![p) » “PRECOMMIT™)
mm ELSE
We 00 Nt want o merfere with the Tender Mt trming assumplions. We wil Dostdate a Drming restrclion whech If satisfed UNCWINGED <<lockedValue, lockedRound, msgsPrecommit, step>>
vereoss & preserved Ve Lises 42-43

. '

In general the local clock may drift from the global time. (T may progress faster, 0.0, 0% Second of clock time Mgt teke 1005 N “‘m‘“. * (wlidhive OXCEPT ;l" .v)
real-tma). As 3 resut the local clock and the globial clock may be measured in different time units. Usually, the message delay /\ valigRound® = (valisRound EXCEPT !(p] = roundip}]
" Pobal Choch tme undis Te estmate the COTect KCal Lmeou! precrsely. me would need 1o e3tmale the Cock Lme dur aton of A\ UNOWINGED <<round, decision, msgsPropose, ssgsPrevote,
delay taking into account the clock drift For smpicity we ignore s, and deectly postuiate the message delay assamption n lecalllock, reallime, receivedTiselyProposal, inspectedProposal,
e

beginConsensus, enaConsenses, lastBeginConsensus, proposallime, proposalRecelivedTiser»
J\ action’ = “UpanProposalinPrevoteOrCommitAndPrevote™

Why it isn’t working

Why it isn’t working

Only experts, with very a specific background
can do it

Why it isn’t working

Only experts, with very a specific background
can do it

We want engineers and auditors to formalize
and analyze their own protocols

20

Quint: more than a modern
specification language

Quint

Quint

An executable specification language design for
usability

Quint

An executable specification language design for
usability

Combines the robust theoretical basis of TLA - it is
INn a WAy a New S

Quint

An executable specification language design for
usability

Combines the robust theoretical basis of TLA - it is
in a way a new skin for TLA+

With state-of-the-art static analysis and
development tooling

22

The team

lgor Konnov Gabriela Moreira Jure Kukovec

Thomas P

The Quint language

Design principles

Design principles

Least surprise: copy syntax from mainstream languages

Design principles

Least surprise: copy syntax from mainstream languages

Easy to read: keeps the set of ASCII control characters to
minimum, eliminates ambiguity, types

Design principles

Least surprise: copy syntax from mainstream languages

Easy to read: keeps the set of ASCII control characters to
minimum, eliminates ambiguity, types

Easy to write and parse: a small set of syntactic rules (250
LOC)

25

Design principles

Least surprise: copy syntax from mainstream languages

Easy to read: keeps the set of ASCII control characters to
minimum, eliminates ambiguity, types

Easy to write and parse: a small set of syntactic rules (250
LOC)

(Mostly) compatible with TLA+

25

Design principles

Least surprise: copy syntax from mainstream languages

Easy to read: keeps the set of ASCII control characters to
minimum, eliminates ambiguity, types

Easy to write and parse: a small set of syntactic rules (250
LOC)

(Mostly) compatible with TLA+

Command line-first: IDEs change, CLI tools stay

25

Comments
// one Lline

/* multiple
lines x/

Basic types

bool - Booleans
int - signed big integers
str - string literals

type Name = otherType
type alias, starts with
upper-—case

Literals

false true

123 123 _000 ©0x12abcd
“Quint”: str, a string

Int: Set[int] - all integers

Nat: Set[int] - all non-
negative integers

Bool = Set(false, true)

Records
{ name: str, age: int }

Cheatsheet

Sets - core data structure!

Set[T] - type: set with
elements of type T

Set(1, 2, 3) - new set,
contains 1its arguments
1.to(4) - new set:
Set(1, 2, 3, 4)

1.in(S) - true, if the
argument 1s in S

S.contains(1) - the same

S.subseteq(7T) - true, if
all elements of S are in T

S.union(7T) - new set:
elements in S or in T

S.intersect(T) - new set:
elements both in S and in T

S.exclude(T) - new set:
elements in S but not in T

S.map(x => 2 % X) - new
set: elements of S are
transformed by expression

S.filter(x => x > 0) -
new set: leaves the elements
of S that satisfy condition

S.exists(x => x > 10) -
true, if some element of S
satisfies condition

S.forall(x => x <= 10) -

true, if all elements of S

”~

Maps - key/value bindings

a —> b - type: binds keys of
type a to values of type b

Map(l —> 2, 3 —> 6) - binds
keys 1, 3 to values 2, 6

S.mapBy(x => 2 % x) - binds
keys in S to expressions

M.keys() - the set of keys

M.get(key) - get the value
bound to key

M.set(k, v) - copy of M: but
binds kK to v, 1f k has a value

M.put(key, v) - copy of M:
but (re-)binds k to v

M.setBy(k, (old => old + 1))
as M.set(k, v) but v is computed
via anonymous operator with old
== M.get (k)

S.set0fMaps(T) - new set:
contains all maps that bind
elements of S to elements of T

Set((1, 2), (3, 6)).setToMap()
new map: bind the first elements of
tuples to the second elements

Tuples
(str, int, bool)

+1iinle tvne

Lists - use Set, if you can

List[7T] - type: list with
elements of type T

[1, 2, 3] - new list, contains
its arguments in order

List(1, 2, 3) - the same

range(start, end) - new list
[start, start + 1, .., end - 1]

length(L) - the number of
elements in the list L

L[i] - ith element,
if @ <= 1 < length(L)

L.concat(K) - new list:
start with elements of L,
continue with elements of K

L.append(x) - new list:
just L.concat([x])

L.replaceAt(i, x) - L’s copy
but the 1th element 1s set to x

L.slice(s, e) - new list:
(L[s], .., Lle = 1]]

L.select(x > 5) - new list:
leaves the elements of L that
satisfy condition

L.foldl(i, (s, x) => x_+_5)
go over elements of L in order,
apply expression, continue with

Highlights

Highlights

* Layered language: it introduces "modes", which are similar in
spirit to TLA+ levels, but more refined

Highlights

* Layered language: it introduces "modes", which are similar in
spirit to TLA+ levels, but more refined

* Types are built-in

Highlights

* Layered language: it introduces "modes", which are similar in
spirit to TLA+ levels, but more refined

* Types are built-in

* Folds instead of recursive oper

Highlights

* Layered language: it introduces "modes", which are similar in
spirit to TLA+ levels, but more refined

* Types are built-in

* Folds instead of recursive operc

¢ |solates non-c

Layered language

Pure and stateful definitions

Layered language

Pure and stateful definitions

pure val MAX_UINT = 27256 - 1

pure def sumOverBalances(balances) = {
balances.keys().fold(O,

(sum, a) => sum + balances.get(a))

3

var state: Erc20State
val totalSupplylnv = isTotalSupplyCorrect(state)

28

Layered language

Pure and stateful definitions

pure val MAX_UINT = 27256 - 1 pure = stateless definitions

pure def sumOverBalances(balances) = {
balances.keys().fold(O,

(sum, a) => sum + balances.get(a))

3

var state: Erc20State
val totalSupplylnv = isTotalSupplyCorrect(state)

28

Layered language

Pure and stateful definitions

pure val MAX_UINT = 27256 - 1 pure = stateless definitions

pure def sumOverBalances(balances) = {

balances.keys().fold(O0, var = state variable

(sum, a) => sum + balances.get(a))

3

var state: Erc20State
val totalSupplylnv = isTotalSupplyCorrect(state)

28

Layered language

Pure and stateful definitions

pure val MAX_UINT = 2256 - 1 pure = stateless definitions

pure def sumOverBalances(balances) = {

balances.keys().fold(O0, var = state variable

(sum, a) => sum + balances.get(a))

3

var state: Erc20State <
val totalSupplylnv = isTotalSupplyCorrect(state) val = stateful definition

28

Layered language

Actions

Layered language

Actions

action submit(tx: Transaction): bool = all {
mempool = mempool.union(Set(tx)),
erc20State’ = erc20State,

lastTx' = tx,

3

29

Layered language

Actions

action submit(tx: Transaction): bool = all { Used to make state

mempool' = mempool.union(Set(tx)), transitions
erc20State’ = erc20State,

lastTx' = tx,

3

29

Layered language

Actions

action submit(tx: Transaction): bool = all { Used to make state

mempool' = mempool.union(Set(tx)), transitions
erc20State’ = erc20State,

lastTx' = tx,

3

29

Layered language

Runs

Layered language

Runs

run transferFromWhileApprovelnFlightTest = {
all {
erc20State’ = newErc20("alice”, 91),
mempool’ = Set(), lastTx’ = NoneTx,
} // alice sets a high approval for bob
.then(submit(ApproveTx("alice", "bob", 92)))
// bob immediately initiates his transaction
then(submit(TransferFromTx("bob”, "alice”, "eve", 54)))

// alice changes her mind and lowers her approval to bob

Layered language

Runs

A run represents a finite
execution

run transferFromWhileApprovelnFlightTest = {
all {
erc20State’ = newErc20("alice”, 91),
mempool’ = Set(), lastTx’ = NoneTx,
} // alice sets a high approval for bob
.then(submit(ApproveTx("alice", "bob", 92)))
// bob immediately initiates his transaction
then(submit(TransferFromTx("bob”, "alice”, "eve", 54)))

// alice changes her mind and lowers her approval to bob

Layered language

Runs

A run represents a finite
execution

run transferFromWhileApprovelnFlightTest = {
all {
erc20State’ = newErc20("alice”, 91),
mempool’ = Set(), lastTx’ = NoneTx,
} // alice sets a high approval for bob
.then(submit(ApproveTx("alice", "bob", 92)))

// bob immediately initiates his transaction

aquence of actions

then(submit(TransferFromTx("bob", "alice”, "eve”, 54)))

// alice changes her mind and lowers her approval to bob

Layered language

Runs

A run represents a finite
execution

run transferFromWhileApprovelnFlightTest = {
all {
erc20State’ = newErc20("alice”, 91),
mempool’ = Set(), lastTx’ = NoneTx,
} // alice sets a high approval for bob
.then(submit(ApproveTx("alice", "bob", 92)))

// bob immediately initiates his transaction

Sequence of actions

ests: unit tests
based

then(submit(TransferFromTx("bob", "alice”, "eve”, 54)))

// alice changes her mind and lowers her approval to bob

Layered language

Temporal

Layered language

Temporal

temporal noOverheat =
always (temperature <= 100)

temporal eventuallyOff =
eventually(not(heatingOn))

Layered language

Temporal

temporal noOverheat = TemPOI'CII PI'OPeI'ﬁeS

always (temperature <= 100)

temporal eventuallyOff =
eventually(not(heatingOn))

Layered language

Temporal

temporal noOverheat = TemPOTCII properties
always (temperature <= 100)

temporal eventuallyOff = Describe inﬁnii'e
eventually(not (heatingOn)) executions

31

Types are built-in

Types are built-in

// type aliases

type Address = str

type Uint = int

// variables must have a type annotation

var mempool: Set[Transaction]
/ / operators may have a type annotation
pure def isUint(i: int): bool =

(0 <=1 and i <= MAX_UINT)

32

Types are built-in

// type aliases
type Address = str

type Uint = int

// variables must have a type annotation
var mempool: Set[Transaction]

/ / operators may have a type annotation

pure def isUint(i: int): bool =
(0 <=1 and i <= MAX_UINT)

// a record type

type Erc20State = {
// a map of addresses to amounts
balanceOf: Address -> Uint,
// the sum of all balances
totalSupply: Uint,
// a map of pairs to amounts
allowance: (Address, Address) -> Uint,
// the address of the contract creator

owhner: Address,

3

Folds instead of recursive operators

Folds instead of recursive operators

lteration over sets
/ /iterates in some order
/ /always terminates

//s1ze(..) iterations

pure def sumOverBalances(balances) = {

balances.keys().
fold(O, (sum, a) => sum + balances.get(a))

33

Folds instead of recursive operators

Iteration over sets Iteration over lists

/ /iterates in some order / /always terminates

//always terminates //len(..) iterations

//size(..) 1terations pure def simpleHash(word) =

pure def sumOverBalances(balances) = { word.foldl(0O, (1, j) => 1+ j) % BASE

balances.keys().
fold(O, (sum, a) => sum + balances.get(a))

33

Quint tools

errors in

ha aths
I ppy paths
syntax errors % (

corner-cases

— — cornercases

&

(other errors

(

*
W —
fype errors

o,

effects &
wode errors

& —

basic

errors in
ha aths
PPY P % (

corner-cases

other errors

B

fl

r' ot .
A q |

Parser and VSCode plugin

Quint
Informal Systems | &, 37installs |~ (0) | Free

Language support for Quint specifications

Trouble Installing? 2

Overview Version History Q&A Rating & Review

Quint

This extension provides language support for Quint, the specification language.

Parser and VSCode plugin

Quint
Informal Systems | &, 37installs |~ (0) | Free

Instant feedback on

Overview Version History Q&A Rating & Review

Quint

This extension provides language support for Quint, the specification language.

Parser and VSCode plugin

Quint

Informal Systems | &, 37installs | ~ (0) | Free

Language support for Quint specifications I n slllq n-I- fe e d b q C k 0 n
Trouble Installing? (2

Overview Version History Q&A Rating & Review

yes, mode and
2rrors

Quint

This extension provides language support for Quint, the specification language.

Type checker W

F

eceo &« > [£ quint J 0g |

~ erc20.gnt @ 00 oo

examples > solidity > ERC20 > = erc20.qnt
13 module erc20 {

206 // Properties that do not belong to the original EIP20 spec,
207 // but they should hold true.

208

209 pure def sumOverBalances(balances: Address —> int): int = {
210 balances.keys().fold(@, (sum, a) => sum + balances.get(a))
P4 ¥

212

213 // The total supply, as stored in the state,

214 // 1s equal to the sum of amounts over all balances.

215 pure def isTotalSupplyCorrect(state: Erc20State): bool = {
216 state.balanceOf.sumOverBalances() == state.totalSupply

217 s

218

219 // Zero address should not carry coins.

220 pure def isZeroAddressEmpty(state: Erc20State): bool = @

221 state.balance0Of.get(ZERO_ADDRESS) ==

222 |

223 }

224

225 // There are no overflows in totalSupply, balanceOf, and approve.

|
NIV E n D . / ATel® Noo = ENA

29 Pull Request #787 -- INSERT -- LF Quint [Chronicler: 00:01 & 0Q

X 1 igorfverify740* < ®O0AO0

Type checker W

F

eceo &« > [£ quint J 0g |

~ erc20.gnt @ 00 oo

examples > solidity > ERC20 > = erc20.qnt
13 module erc20 {

206 // Properties that do not belong to the original EIP20 spec,
207 // but they should hold true.

208

209 pure def sumOverBalances(balances: Address —> int): int = {
210 balances.keys().fold(@, (sum, a) => sum + balances.get(a))
P4 ¥

212

213 // The total supply, as stored in the state,

214 // 1s equal to the sum of amounts over all balances.

215 pure def isTotalSupplyCorrect(state: Erc20State): bool = {
216 state.balanceOf.sumOverBalances() == state.totalSupply

217 s

218

219 // Zero address should not carry coins.

220 pure def isZeroAddressEmpty(state: Erc20State): bool = @

221 state.balance0Of.get(ZERO_ADDRESS) ==

222 |

223 }

224

225 // There are no overflows in totalSupply, balanceOf, and approve.

|
NIV E n D . / ATel® Noo = ENA

29 Pull Request #787 -- INSERT -- LF Quint [Chronicler: 00:01 & 0Q

X 1 igorfverify740* < ®O0AO0

errors in
ha aths
PPY P % (

corner-cases

other errors

B

fl

r' ot .
A q |

ner-cases

other errors

REPL: read-eval-print loop

~o o & £ quint D & O 08
erc20.gnt X Q) n m ---

examples > solidity > ERC20 > erc20.qnt
13 module erc20 {

=T 7 r

131 pure def transfer(state: Erc20State, sender: Address,

2 132 toAddr: Address, amount: Uint): Erc2@Result = { —
133 // “transfer always returns true, but we should check Erc20Result.err
134 _transfer(state, sender, toAddr, amount)
135 +
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL COMMENTS > zsh-ERC20 + v [[J W -+ ~ X

i

igor@crash axamples/solidity/ERC20 = 2 [igor/erc20-fix X x

$ quint -r erc20.qntfj

X $°igorferc20-fix* <O ®0A 0 9 Pull Request #790 -- NORMAL -- LF Quint [Chronicler: 00:01 & 0

39

62

W

erc20.gnt X

e

examples > solidity > ERC20 > erc20.qnt

e LT

G |
132
133
134
135

PROBLEMS

PP LYPyEy igor@crash

?

13 module erc20 {

™

£ quint

REPL: read-eval-print loop

D & (I 08

© & O -

pure def transfer(state: Erc20State, sender: Address,
toAddr: Address, amount: Uint): Erc2@Result = {

// “transfer always returns true, but we should check Erc20Result.err

_transfer(state, sender, toAddr, amount)

|

OUTPUT DEBUG CONSOLE TERMINAL

COMMENTS

$ quint -r erc20.qntfj

£° igorferc20-fix*

O

®0AO0 9 Pull Request #790

-- NORMAL --

LF Quint

>] zsh - ERC20 —+ ~ [I] T

[] igor/erc20-fix X x

] Chronicler: 00:01

39

27

A

Interactive
learning

62

W

erc20.gnt X

e

examples > solidity > ERC20 > erc20.qnt

e LT

G |
132
133
134
135

PROBLEMS

PP LYPyEy igor@crash

?

13 module erc20 {

™

£ quint

REPL: read-eval-print loop

D & (I 08

© & O -

pure def transfer(state: Erc20State, sender: Address,
toAddr: Address, amount: Uint): Erc2@Result = {

// “transfer always returns true, but we should check Erc20Result.err

_transfer(state, sender, toAddr, amount)

|

OUTPUT DEBUG CONSOLE TERMINAL

COMMENTS

$ quint -r erc20.qntfj

£° igorferc20-fix*

O

®0AO0 9 Pull Request #790

-- NORMAL --

LF Quint

>] zsh - ERC20 —+ ~ [I] T

[] igor/erc20-fix X x

] Chronicler: 00:01

39

27

A

Interactive
learning

Step-by-step
debugging

62

W

erc20.gnt X

e

examples > solidity > ERC20 > erc20.qnt

e LT

G |
132
133
134
135

PROBLEMS

PP LYPyEy igor@crash

?

13 module erc20 {

™

£ quint

REPL: read-eval-print loop

D & (I 08

© & O -

pure def transfer(state: Erc20State, sender: Address,
toAddr: Address, amount: Uint): Erc2@Result = {

// “transfer always returns true, but we should check Erc20Result.err

_transfer(state, sender, toAddr, amount)

|

OUTPUT DEBUG CONSOLE TERMINAL

COMMENTS

$ quint -r erc20.qntfj

£° igorferc20-fix*

O

®0AO0 9 Pull Request #790

-- NORMAL --

LF Quint

>] zsh - ERC20 —+ ~ [I] T

[] igor/erc20-fix X x

] Chronicler: 00:01

39

27

A

Interactive
learning

Step-by-step
debugging

ner-cases

other errors

sther errors

Random simulator

Random simulator

We can use the run command to execute a Quint specification via
random simulation similar to stateful property-based testing

Random simulator

We can use the run command to execute a Quint specification via
random simulation similar to stateful property-based testing

In other words, check invariants in —max-samples random
executions up to —max-steps each

41

Random simulator

We can use the run command to execute a Quint specification via
random simulation similar to stateful property-based testing

In other words, check invariants in —max-samples random
executions up to —max-steps each

41

Random simulator

Random simulator

Two special actions:

Random simulator

Two special actions:

o init: modifies all state variables,
reads none

Random simulator

Two special actions:

o init: modifies all state variables,
reads none

e step: modifies all state
variables, may read some

Random simulator

Two special actions:

o init: modifies all state variables,
reads none

e step: modifies all state
variables, may read some

Ways of inserting non-determinism

Random simulator

Two special actions:

o init: modifies all state variables,
reads none

e step: modifies all state
variables, may read some

Ways of inserting non-dete

e oneOf(S) random

element

inism

sele

Random simulator

Two special actions:

o init: modifies all state variables,
reads none

e step: modifies all state
variables, may read some

Ways of inserting non-determinism

e oneOf(S) randon

element

Al

sele

Random simulator

Two special actions:

o init: modifies all state variables,

reads none

e step: modifies all state
variables, may read some

Ways of inserting non-determinism

e oneOf(S) randomly selects a set
element

° any { Al, ..., An } randomly
selects an action

action step =
any {
nondet sender = oneOf(ADDR)
nondet amount = oneOf (AMOUNTS)

nondet toAddr = oneOf(ADDR)

any {
DepositTx(sender, amount),

TransferTx(sender, toAddr, amount),

42

Random simulator

Random simulator

The simulator tries to find the shortest trace that violates the
Invariant

Random simulator

The simulator tries to find the shortest trace that violates the
Invariant

If it finds one, it outp e trace

Random simulator

The simulator tries to find the shortest trace that violates the
Invariant

If it finds one, it outputs the trace

It it does not find a violating trace, it outputs the longest sample
trace that the simulator has found during the execution

43

Trace viewer

Trace viewer

ITF Trace Viewer
Informal Systems | & 62installs | ~ (0) | Free

View nicely formatted ITF trace files

Install Trouble Installing? 2

Overview Version History Q&A Rating & Review

ITF Trace Viewer

VS Code extension for viewing ITF trace files as nicely formatted tables.

Trace viewer

ITF Trace Viewer
Informal Systems | & 62installs | ~ (0) | Free

View nicely formatted ITF trace files

Install Trouble Installing? 2

Overview Version History Q&A Rating & Review

ITF Trace Viewer

VS Code extension for viewing ITF trace files as nicely formatted tables.

1dn Vanzetto

Trace viewer

ITF Trace Viewer
owner : rever Informal Systems | & 62installs |~ (0) | Free
lastTx kind : "transferFrom" View nicely formatted ITF trace files
status : "success" | |
sender - "bob" Install Trouble Installing? (2

fromAddr : "eve"
toAddr : "eve"

amount : #bigint : "233254274130610816161613290071109
spender :"0O"

Overview Version History Q&A Rating & Review

ITF Trace Viewer

mempool {
1 P |) n
kind . approve VS Code extension for viewing ITF trace files as nicely formatted tables.
status : "pending”
sender : "bob"

spender : "alice"
fromAddr : "0"
toAddr :"O"

amount : #bigint : "53653445602568159182393139999041208419205

1an Vanzetto

Testing framework

Testing framework

We can use the test
command to run tests (run
operators) against a Quint

specification

Testing framework

We can use the test
command to run tests (run
operators) against a Quint

specification

Unit tests and property
based tests

Testing framework

We can use the test
command to run tests (run
operators) against a Quint

specification

Unit tests and property
based tests

vy TO use

Testing framework

run transferFromWhileApprovelnFlightTest = {

all §

We cdn use the test erc20State’ = newErc20("alice”, 91),

command fo run tests (I'UI'I mempool = Set(), lastTx = NoneTx,
operators) against a Quint :

. . .then(submit(ApproveTx(“alice”, "bob", 92)))
specification

then(submit(TransferFromTx("bob", "alice”, "eve”, 54)))

Unit tests and property-
based tests

Easy to use with continuos

iIntegration
45

Testing framework

run transferFromWhileApprovelnFlightTest = {

all §
We cdn use the test erc20State’ = newErc20("alice”, 91),
command fo run tests (I'Uﬂ mempool = Set(), lastTx = NoneTx,
operators) against a Quint :
o - .then(submit(ApproveTx("alice”, "bob", 92)))
specification

then(submit(TransferFromTx("bob", "alice”, "eve”, 54)))

Unit tests and property-

$ quint test --main=erc2@Tests erc20.qgnt
based tests

erc20Tests

‘) ok transferTest passed 10000 test(s)
Easy to use with continuos

Iﬂf&QrClhOn 1 passing (895ms)

-

yther errors

errors in

ha aths
PPy paths (

w
other errors

T

-
syntax errors

X

(

About model-checking
Quint specifications

Apalache integration

Apalache integration

The Quint team is working on integrating the Apalache model
checker to verify Quint specifications

Apalache integration

The Quint team is working on integrating the Apalache model
checker to verify Quint specifications

Goal: check invariants for all executions up to —max-steps

Apalache integration

The Quint team is working on integrating the Apalache model
checker to verify Quint specifications

Goal: check invariants for all executions up to —max-steps

Apalache is our in-house syr | checker

Apalache integration

The Quint team is working on integrating the Apalache model
checker to verify Quint specifications

Goal: check invariants for all executions up to —max-steps
Apalache is our in-house symbolic model checker

The Quint team has already been able to check a
Tendermint Quint specification!

48

When and how we use
Quint

When we use it

When we use it

To design new protocols or features from scratch

When we use it

To design new protocols or features from scratch

To formalize existing protocols: from code or
documentatior

When we use it

To design new protocols or features from scratch

To formalize existing protocols: from code or
documentation

To find bugs | dits)

When we use it

To design new protocols or features from scratch

To formalize existing protocols: from code or
documentation

To find bugs in exi: ting dits)

Quint sc well

Conclusions

Conclusions

Conclusions

Our goal is that “anyone” can formalize and check their
protocols

Conclusions

Our goal is that “anyone” can formalize and check their
protocols

The Quint language and the tools around it aim at enabling
this

Conclusions

Our goal is that “anyone” can formalize and check their
protocols

The Quint language and the tools around it aim at enabling
this

By having a syntax that’s similar to programming
languages and providing an experience similar to what
software development looks for engineers

52

Thanks!

manuel@informal.systems

