
Manuel Bravo <manuel@informal.systems>

Formal modeling at
Informal Systems

mailto:manuel@informal.systems

What we do

2

What we do
We help to build confidence in the

Cosmos ecosystem (aka the interchain)

2

Wait, what’s the interchain?

3

The interchain: the Internet of Blockchains

4

AGORIC
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

A network of blockchains able to communicate
with each other in a decentralized way

The interchain: the Internet of Blockchains

5

AGORIC
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

248+ apps and services

Distributed protocols everywhere!

6

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

key to handle a large
number of validators

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

key to handle a large
number of validatorstolerant to Byzantine peers

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

key to handle a large
number of validatorstolerant to Byzantine peers

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

key to handle a large
number of validatorstolerant to Byzantine peers

BFT State Machine
Replication

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

key to handle a large
number of validatorstolerant to Byzantine peers

BFT State Machine
Replication

typically CometBFT, an
implementation of

Tendermint

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

application layer

key to handle a large
number of validatorstolerant to Byzantine peers

BFT State Machine
Replication

typically CometBFT, an
implementation of

Tendermint

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

application layer

Application Blockchain
Interface (ABCI)

key to handle a large
number of validatorstolerant to Byzantine peers

BFT State Machine
Replication

typically CometBFT, an
implementation of

Tendermint

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

application layer

Application Blockchain
Interface (ABCI)

key to handle a large
number of validatorstolerant to Byzantine peers

BFT State Machine
Replication

typically CometBFT, an
implementation of

Tendermint

local applications, e.g.,
the staking module

The interchain: the Internet of Blockchains

7
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

application layer

Application Blockchain
Interface (ABCI)

key to handle a large
number of validatorstolerant to Byzantine peers

BFT State Machine
Replication

typically CometBFT, an
implementation of

Tendermint

local applications, e.g.,
the staking module

also distributed applications,
e.g., the token transfer app

The interchain: the Internet of Blockchains

8
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

The interchain: the Internet of Blockchains

9
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

The interchain: the Internet of Blockchains

9
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

Inter-blockchain Communication
Protocol (IBC)

The interchain: the Internet of Blockchains

9
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

Inter-blockchain Communication
Protocol (IBC)

IBC

The interchain: the Internet of Blockchains

9
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

Inter-blockchain Communication
Protocol (IBC)

IBC

Relayer

The interchain: the Internet of Blockchains

9
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

Inter-blockchain Communication
Protocol (IBC)

IBC

Fungible Token Transfer

Relayer

The interchain: the Internet of Blockchains

9
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

Inter-blockchain Communication
Protocol (IBC)

IBC

Fungible Token Transfer

Interchain Security

Relayer

…

The interchain: the Internet of Blockchains

9
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

Inter-blockchain Communication
Protocol (IBC)

IBC

Fungible Token Transfer

Interchain Security

Pub-sub Service

Relayer

What we do
We help to build confidence in the

Cosmos ecosystem (aka the interchain)

10

What we do
We help to build confidence in the

Cosmos ecosystem (aka the interchain)

10

How we do it

What we do
We help to build confidence in the

Cosmos ecosystem (aka the interchain)

10

How we do it
1. Stewarding critical software components

What we do
We help to build confidence in the

Cosmos ecosystem (aka the interchain)

10

How we do it
1. Stewarding critical software components

2. Conducting security audits to key projects

What we do
We help to build confidence in the

Cosmos ecosystem (aka the interchain)

10

How we do it
1. Stewarding critical software components

2. Conducting security audits to key projects

3. Securing chains by reliably validating

How we do it: #1 stewarding

11
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

application layer

Application Blockchain
Interface (ABCI)

key to handle a large
number of validatorstolerant to Byzantine peers

BFT State Machine
Replication

typically CometBFT, an
implementation of

Tendermint

local applications, e.g.,
the staking module

also distributed applications,
e.g., the token transfer app

How we do it: #1 stewarding

11
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

application layer

Application Blockchain
Interface (ABCI)

key to handle a large
number of validatorstolerant to Byzantine peers

BFT State Machine
Replication

typically CometBFT, an
implementation of

Tendermint

local applications, e.g.,
the staking module

also distributed applications,
e.g., the token transfer app ⭐

How we do it: #1 stewarding

11
COSMOS HUB

OSMOSIS
INJECTIVE

REGEN

p2p layer

consensus layer

application layer

Application Blockchain
Interface (ABCI)

key to handle a large
number of validatorstolerant to Byzantine peers

BFT State Machine
Replication

typically CometBFT, an
implementation of

Tendermint

local applications, e.g.,
the staking module

also distributed applications,
e.g., the token transfer app ⭐

⭐

…

12
COSMOS HUB

OSMOSIS
INJECTIVE

Inter-blockchain Communication
Protocol (IBC)

IBC

Fungible Token Transfer

Interchain Security

Pub-sub Service

Relayer

REGEN

How we do it: #1 stewarding

…

12
COSMOS HUB

OSMOSIS
INJECTIVE

Inter-blockchain Communication
Protocol (IBC)

IBC

Fungible Token Transfer

Interchain Security

Pub-sub Service

Relayer

REGEN

How we do it: #1 stewarding

⭐

…

12
COSMOS HUB

OSMOSIS
INJECTIVE

Inter-blockchain Communication
Protocol (IBC)

IBC

Fungible Token Transfer

Interchain Security

Pub-sub Service

Relayer

REGEN

How we do it: #1 stewarding

⭐

⭐

…

12
COSMOS HUB

OSMOSIS
INJECTIVE

Inter-blockchain Communication
Protocol (IBC)

IBC

Fungible Token Transfer

Interchain Security

Pub-sub Service

Relayer

REGEN

How we do it: #1 stewarding

⭐

⭐

⭐

How we do it: #2 security audits

13

How we do it: #2 security audits

We offer code review, and protocol design
services: protocol design, formalization and

analysis

13

How we do it: #2 security audits

We offer code review, and protocol design
services: protocol design, formalization and

analysis

We leverage formal methods and tools to
make distributed systems secure and resilient

13

How we do it: protocol design service

14

How we do it: protocol design service

14

E.g., a client has a protocol and want help
formalizing it

How we do it: protocol design service

14

E.g., a client has a protocol and want help
formalizing it

We produce a specification artifact that includes
a formal specification with a set of desired
properties and make assumptions explicit

How we do it: protocol design service

15

How we do it: protocol design service

15

E.g., a client has a formalized protocol and want
help checking its correctness

How we do it: protocol design service

15

E.g., a client has a formalized protocol and want
help checking its correctness

We deliver a correctness artifact produced via
different methods that provide different levels of trust

How we do it: protocol design service

15

E.g., a client has a formalized protocol and want
help checking its correctness

We deliver a correctness artifact produced via
different methods that provide different levels of trust

Simulations using executable specs, model-checking
or pencil-and-paper mathematical analysis

How we do it: #3 securing chains

16

How we do it: #3 securing chains

16

Proof-of-Stake validation and IBC relaying on
major networks

How we do it: #3 securing chains

16

Proof-of-Stake validation and IBC relaying on
major networks

This means that we participate in consensus
on major blockchains and relay packets
between them for chain interoperability

Our approach

17

Our approach

17

We adopt the “model first” approach

Our approach

17

We adopt the “model first” approach

Where formal models are first-class artifacts in the
software development process

Our approach

17

We adopt the “model first” approach

Where formal models are first-class artifacts in the
software development process

We apply it both in the projects we steward, and in the
security audits that involve protocol design and analysis

Formal modeling and protocol
analysis at Informal Systems

18

How we’ve done it so far

19

How we’ve done it so far

19

PODC/DISC style

How we’ve done it so far

19

PODC/DISC style
TLA+

Why it isn’t working

20

Why it isn’t working

20

Only experts, with very a specific background
can do it

Why it isn’t working

20

Only experts, with very a specific background
can do it

We want engineers and auditors to formalize
and analyze their own protocols

Quint: more than a modern
specification language

21

Quint

22

Quint

22

An executable specification language design for
usability

Quint

22

An executable specification language design for
usability

Combines the robust theoretical basis of TLA - it is
in a way a new skin for TLA+

Quint

22

An executable specification language design for
usability

Combines the robust theoretical basis of TLA - it is
in a way a new skin for TLA+

With state-of-the-art static analysis and
development tooling

The team

23

Igor Konnov

Thomas Pani

Gabriela Moreira

Shon Feder

Jure Kukovec

The Quint language

24

Design principles

25

Design principles

25

Least surprise: copy syntax from mainstream languages

Design principles

25

Least surprise: copy syntax from mainstream languages

Easy to read: keeps the set of ASCII control characters to
minimum, eliminates ambiguity, types

Design principles

25

Least surprise: copy syntax from mainstream languages

Easy to read: keeps the set of ASCII control characters to
minimum, eliminates ambiguity, types

Easy to write and parse: a small set of syntactic rules (250
LOC)

Design principles

25

Least surprise: copy syntax from mainstream languages

Easy to read: keeps the set of ASCII control characters to
minimum, eliminates ambiguity, types

Easy to write and parse: a small set of syntactic rules (250
LOC)

(Mostly) compatible with TLA+

Design principles

25

Least surprise: copy syntax from mainstream languages

Easy to read: keeps the set of ASCII control characters to
minimum, eliminates ambiguity, types

Easy to write and parse: a small set of syntactic rules (250
LOC)

(Mostly) compatible with TLA+

Command line-first: IDEs change, CLI tools stay

Cheatsheet

26

Highlights

27

Highlights

27

•Layered language: it introduces "modes", which are similar in
spirit to TLA+ levels, but more refined

Highlights

27

•Layered language: it introduces "modes", which are similar in
spirit to TLA+ levels, but more refined

•Types are built-in

Highlights

27

•Layered language: it introduces "modes", which are similar in
spirit to TLA+ levels, but more refined

•Types are built-in

•Folds instead of recursive operators

Highlights

27

•Layered language: it introduces "modes", which are similar in
spirit to TLA+ levels, but more refined

•Types are built-in

•Folds instead of recursive operators

•Isolates non-determinism

Layered language

28

Pure and stateful definitions

Layered language

28

pure val MAX_UINT = 2^256 - 1

pure def sumOverBalances(balances) = {
 balances.keys().fold(0,
 (sum, a) => sum + balances.get(a))
}
var state: Erc20State
val totalSupplyInv = isTotalSupplyCorrect(state)

Pure and stateful definitions

Layered language

28

pure val MAX_UINT = 2^256 - 1

pure def sumOverBalances(balances) = {
 balances.keys().fold(0,
 (sum, a) => sum + balances.get(a))
}
var state: Erc20State
val totalSupplyInv = isTotalSupplyCorrect(state)

Pure and stateful definitions

pure = stateless definitions

Layered language

28

pure val MAX_UINT = 2^256 - 1

pure def sumOverBalances(balances) = {
 balances.keys().fold(0,
 (sum, a) => sum + balances.get(a))
}
var state: Erc20State
val totalSupplyInv = isTotalSupplyCorrect(state)

Pure and stateful definitions

pure = stateless definitions

var = state variable

Layered language

28

pure val MAX_UINT = 2^256 - 1

pure def sumOverBalances(balances) = {
 balances.keys().fold(0,
 (sum, a) => sum + balances.get(a))
}
var state: Erc20State
val totalSupplyInv = isTotalSupplyCorrect(state)

Pure and stateful definitions

pure = stateless definitions

var = state variable

val = stateful definition

Layered language

29

Actions

Layered language

29

action submit(tx: Transaction): bool = all {
 mempool' = mempool.union(Set(tx)),
 erc20State' = erc20State,
 lastTx' = tx,
 }

Actions

Layered language

29

action submit(tx: Transaction): bool = all {
 mempool' = mempool.union(Set(tx)),
 erc20State' = erc20State,
 lastTx' = tx,
 }

Actions
Used to make state
transitions

Layered language

29

action submit(tx: Transaction): bool = all {
 mempool' = mempool.union(Set(tx)),
 erc20State' = erc20State,
 lastTx' = tx,
 }

Actions
Used to make state
transitions

Layered language

30

Runs

Layered language

30

run transferFromWhileApproveInFlightTest = {

 all {

 erc20State' = newErc20("alice", 91),

 mempool' = Set(), lastTx' = NoneTx,

 } // alice sets a high approval for bob

 .then(submit(ApproveTx("alice", "bob", 92)))

 // bob immediately initiates his transaction

 then(submit(TransferFromTx("bob", "alice", "eve", 54)))

 // alice changes her mind and lowers her approval to bob

 …

}

Runs

Layered language

30

run transferFromWhileApproveInFlightTest = {

 all {

 erc20State' = newErc20("alice", 91),

 mempool' = Set(), lastTx' = NoneTx,

 } // alice sets a high approval for bob

 .then(submit(ApproveTx("alice", "bob", 92)))

 // bob immediately initiates his transaction

 then(submit(TransferFromTx("bob", "alice", "eve", 54)))

 // alice changes her mind and lowers her approval to bob

 …

}

Runs A run represents a finite
execution

Layered language

30

run transferFromWhileApproveInFlightTest = {

 all {

 erc20State' = newErc20("alice", 91),

 mempool' = Set(), lastTx' = NoneTx,

 } // alice sets a high approval for bob

 .then(submit(ApproveTx("alice", "bob", 92)))

 // bob immediately initiates his transaction

 then(submit(TransferFromTx("bob", "alice", "eve", 54)))

 // alice changes her mind and lowers her approval to bob

 …

}

Runs A run represents a finite
execution

Sequence of actions

Layered language

30

run transferFromWhileApproveInFlightTest = {

 all {

 erc20State' = newErc20("alice", 91),

 mempool' = Set(), lastTx' = NoneTx,

 } // alice sets a high approval for bob

 .then(submit(ApproveTx("alice", "bob", 92)))

 // bob immediately initiates his transaction

 then(submit(TransferFromTx("bob", "alice", "eve", 54)))

 // alice changes her mind and lowers her approval to bob

 …

}

Runs A run represents a finite
execution

Sequence of actions

Think about tests: unit tests
and property-based

Layered language

31

Temporal

Layered language

31

temporal noOverheat =
 always(temperature <= 100)

temporal eventuallyOff =
 eventually(not(heatingOn))

Temporal

Layered language

31

temporal noOverheat =
 always(temperature <= 100)

temporal eventuallyOff =
 eventually(not(heatingOn))

Temporal

Temporal properties

Layered language

31

temporal noOverheat =
 always(temperature <= 100)

temporal eventuallyOff =
 eventually(not(heatingOn))

Temporal

Temporal properties

Describe infinite
executions

Types are built-in

32

Types are built-in

32

// type aliases

type Address = str

type Uint = int

// variables must have a type annotation

var mempool: Set[Transaction]

// operators may have a type annotation

pure def isUint(i: int): bool =

 (0 <= i and i <= MAX_UINT)

Types are built-in

32

// type aliases

type Address = str

type Uint = int

// variables must have a type annotation

var mempool: Set[Transaction]

// operators may have a type annotation

pure def isUint(i: int): bool =

 (0 <= i and i <= MAX_UINT)

// a record type

type Erc20State = {

 // a map of addresses to amounts

 balanceOf: Address -> Uint,

 // the sum of all balances

 totalSupply: Uint,

 // a map of pairs to amounts

 allowance: (Address, Address) -> Uint,

 // the address of the contract creator

 owner: Address,

}

Folds instead of recursive operators

33

Folds instead of recursive operators

33

Iteration over sets

//iterates in some order

//always terminates

//size(..) iterations
pure def sumOverBalances(balances) = {
 balances.keys().
fold(0, (sum, a) => sum + balances.get(a))

Folds instead of recursive operators

33

Iteration over sets

//iterates in some order

//always terminates

//size(..) iterations
pure def sumOverBalances(balances) = {
 balances.keys().
fold(0, (sum, a) => sum + balances.get(a))

Iteration over lists

//always terminates

//len(..) iterations

pure def simpleHash(word) =
 word.foldl(0, (i, j) => i + j) % BASE

Quint tools

34

35

🪰

🐞

🕷

🦋

🐛

🪲

🪳

syntax errors
corner-cases

errors in
happy paths

other errors

basic runtime
errors

type errors

effects &
mode errors

35

🪰

🐞

🕷

🦋

🐛

🪲

🪳

syntax errors
corner-cases

errors in
happy paths

other errors

basic runtime
errors

type errors

effects &
mode errors

Parser, type-checker
and VSCode plugin

Parser and VSCode plugin

36

Parser and VSCode plugin

36

Instant feedback on

Parser and VSCode plugin

36

Instant feedback on

syntax, types, mode and
effects errors

Type checker 🦋

37

Type checker 🦋

37

38

🪰

🐞

🕷

🦋

🐛

🪲

🪳

syntax errors
corner-cases

errors in
happy paths

other errors

basic runtime
errors

type errors

effects &
mode errors

Parser, type-checker
and VSCode plugin

38

🪰

🐞

🕷

🦋

🐛

🪲

🪳

syntax errors
corner-cases

errors in
happy paths

other errors

basic runtime
errors

type errors

effects &
mode errors

REPLParser, type-checker
and VSCode plugin

REPL: read-eval-print loop

39

REPL: read-eval-print loop

39

Interactive
learning

REPL: read-eval-print loop

39

Interactive
learning

Step-by-step
debugging

REPL: read-eval-print loop

39

Interactive
learning

Step-by-step
debugging

40

🪰

🐞

🕷

🦋

🐛

🪲

🪳

syntax errors
corner-cases

errors in
happy paths

other errors

basic runtime
errors

type errors

effects &
mode errors

REPLParser, type-checker
and VSCode plugin

Unit & randomized tests

40

🪰

🐞

🕷

🦋

🐛

🪲

🪳

syntax errors
corner-cases

errors in
happy paths

other errors

basic runtime
errors

type errors

effects &
mode errors

REPLParser, type-checker
and VSCode plugin

Random simulator

41

Random simulator

41

We can use the run command to execute a Quint specification via
random simulation similar to stateful property-based testing

Random simulator

41

We can use the run command to execute a Quint specification via
random simulation similar to stateful property-based testing

In other words, check invariants in —max-samples random
executions up to —max-steps each

Random simulator

41

We can use the run command to execute a Quint specification via
random simulation similar to stateful property-based testing

In other words, check invariants in —max-samples random
executions up to —max-steps each

quint run —invariant=myInvariant —verbosity=3 myspec.qnt

Random simulator

42

Random simulator

42

Two special actions:

Random simulator

42

Two special actions:

• init: modifies all state variables,
reads none

Random simulator

42

Two special actions:

• init: modifies all state variables,
reads none

• step: modifies all state
variables, may read some

Random simulator

42

Two special actions:

• init: modifies all state variables,
reads none

• step: modifies all state
variables, may read some

Ways of inserting non-determinism

Random simulator

42

Two special actions:

• init: modifies all state variables,
reads none

• step: modifies all state
variables, may read some

Ways of inserting non-determinism

•oneOf(S) randomly selects a set
element

Random simulator

42

Two special actions:

• init: modifies all state variables,
reads none

• step: modifies all state
variables, may read some

Ways of inserting non-determinism

•oneOf(S) randomly selects a set
element

•any { A1, …, An } randomly
selects an action

Random simulator

42

Two special actions:

• init: modifies all state variables,
reads none

• step: modifies all state
variables, may read some

Ways of inserting non-determinism

•oneOf(S) randomly selects a set
element

•any { A1, …, An } randomly
selects an action

action step =

 any {

 nondet sender = oneOf(ADDR)

 nondet amount = oneOf(AMOUNTS)

 nondet toAddr = oneOf(ADDR)

 any {

 DepositTx(sender, amount),

 TransferTx(sender, toAddr, amount),

 …

 }

 }

Random simulator

43

Random simulator

43

The simulator tries to find the shortest trace that violates the
invariant

Random simulator

43

The simulator tries to find the shortest trace that violates the
invariant

If it finds one, it outputs the trace

Random simulator

43

The simulator tries to find the shortest trace that violates the
invariant

If it finds one, it outputs the trace

If it does not find a violating trace, it outputs the longest sample
trace that the simulator has found during the execution

Trace viewer

44

Trace viewer

44

Trace viewer

44

Hernán Vanzetto

Trace viewer

44

Hernán Vanzetto

Testing framework

45

Testing framework

45

We can use the test
command to run tests (run
operators) against a Quint

specification

Testing framework

45

We can use the test
command to run tests (run
operators) against a Quint

specification

Unit tests and property-
based tests

Testing framework

45

We can use the test
command to run tests (run
operators) against a Quint

specification

Unit tests and property-
based tests

Easy to use with continuos
integration

Testing framework

45

We can use the test
command to run tests (run
operators) against a Quint

specification

Unit tests and property-
based tests

Easy to use with continuos
integration

run transferFromWhileApproveInFlightTest = {

 all {

 erc20State' = newErc20("alice", 91),

 mempool' = Set(), lastTx' = NoneTx,

 } // alice sets a high approval for bob

 .then(submit(ApproveTx("alice", "bob", 92)))

 // bob immediately initiates his transaction

 then(submit(TransferFromTx("bob", "alice", "eve", 54)))

 // alice changes her mind and lowers her approval to bob

 …

}

Testing framework

45

We can use the test
command to run tests (run
operators) against a Quint

specification

Unit tests and property-
based tests

Easy to use with continuos
integration

run transferFromWhileApproveInFlightTest = {

 all {

 erc20State' = newErc20("alice", 91),

 mempool' = Set(), lastTx' = NoneTx,

 } // alice sets a high approval for bob

 .then(submit(ApproveTx("alice", "bob", 92)))

 // bob immediately initiates his transaction

 then(submit(TransferFromTx("bob", "alice", "eve", 54)))

 // alice changes her mind and lowers her approval to bob

 …

}

46

🪰

🐞

🕷

🦋

🐛

🪲

🪳

syntax errors
corner-cases

errors in
happy paths

other errors

basic runtime
errors

type errors

effects &
mode errors

REPL Unit & randomized testsParser, type-checker
and VSCode plugin

Model checking

46

🪰

🐞

🕷

🦋

🐛

🪲

🪳

syntax errors
corner-cases

errors in
happy paths

other errors

basic runtime
errors

type errors

effects &
mode errors

REPL Unit & randomized testsParser, type-checker
and VSCode plugin

About model-checking
Quint specifications

47

Apalache integration

48

Apalache integration

48

The Quint team is working on integrating the Apalache model
checker to verify Quint specifications

Apalache integration

48

The Quint team is working on integrating the Apalache model
checker to verify Quint specifications

Goal: check invariants for all executions up to —max-steps

Apalache integration

48

The Quint team is working on integrating the Apalache model
checker to verify Quint specifications

Goal: check invariants for all executions up to —max-steps

Apalache is our in-house symbolic model checker

Apalache integration

48

The Quint team is working on integrating the Apalache model
checker to verify Quint specifications

Goal: check invariants for all executions up to —max-steps

Apalache is our in-house symbolic model checker

The Quint team has already been able to check a
Tendermint Quint specification!

When and how we use
Quint

49

When we use it

50

When we use it

50

To design new protocols or features from scratch

When we use it

50

To design new protocols or features from scratch

To formalize existing protocols: from code or
documentation

When we use it

50

To design new protocols or features from scratch

To formalize existing protocols: from code or
documentation

To find bugs in existing implementations (audits)

When we use it

50

To design new protocols or features from scratch

To formalize existing protocols: from code or
documentation

To find bugs in existing implementations (audits)

Quint specs have shown potential for onboarding as well

Conclusions

51

Conclusions

52

Conclusions

52

Our goal is that “anyone” can formalize and check their
protocols

Conclusions

52

Our goal is that “anyone” can formalize and check their
protocols

The Quint language and the tools around it aim at enabling
this

Conclusions

52

Our goal is that “anyone” can formalize and check their
protocols

The Quint language and the tools around it aim at enabling
this

By having a syntax that’s similar to programming
languages and providing an experience similar to what

software development looks for engineers

Thanks!

manuel@informal.systems

53

