Topology and Property-Specific Verification and Synthesis (V&S) of Parameterized Distributed Protocols (PDP)

Ali Ebnenasir aebnenas@mtu.edu

Department of Computer Science College of Computing Michigan Technological University Houghton MI 49931

http://asd.cs.mtu.edu/

Modeling Parameterized Distributed Protocols (PDP)

Significance of PDPs

From System on Chip, to multithreaded programs and large scale network protocols.

Vision: Topology and Property-Specific Verification and Synthesis (V&S) of PDP

- Solve V&S for a set of elementary topologies and determine necessary and/or sufficient conditions for their property-preserving composition.
 - Elementary topologies such as ring, chain, tree

Start With Self-Stabilizing Uni-directional Rings

- Topology = Uni-directional Ring (Uni-Ring)
 - Uni-directional topologies are important in wireless (mobile) networks
 - Some communication links may become uni-directional due to RF range constraints
 - Uni-directional ring (uni-ring) is a simple but useful model of computation
 - · Information flows only in one direction.
 - Results can be useful for any topology that contains (uni-)rings
- Property = Self-stabilization (which entails livelock-freedom, deadlock-freedom)
 - Important applications in networks, multi-agent systems and socioeconomics

Related Work

- Verification of temporal logic properties for parameterized protocols is undecidable. [Apt and Kozen 1986]
- Verification problem remains undecidable even for uni-rings. [Suzuki 1988]
- What if we make the model stronger and focus on a specific property?
 - self-disabling, constant-space and deterministic processes
 - property: self-stabilization of symmetric uni-rings
 - conjunctive invariants
- Decidability of the V&S problems?

[Apt and Kozen 1986] K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22, 6 (1986), pp. 307–309.

[Suzuki 1988] I.Suzuki. 1988. Proving properties of a ring of finite-state machines. Inform. Process. Lett. 28, 4 (Jul. 1988), 213–214.

V&S of Parameterized Self-Stabilizing Symmetric Uni-Directional Rings with Constant-Space Processes

Self-Stabilization (SS)

"The ability of a distributed system to resume its legal behavior in a finite number of steps regardless of its initial configuration/state" [Dijkstra'74, Arora and Gouda'93]

Self-stabilization = closure + convergence

[1] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control. Communications of the ACM, vol. 17, no. 11, pp. 643-644, 1974

[2] A. Arora and M. Gouda, Closure and Convergence: A foundation of fault-tolerant computing. IEEE Transactions on Software Engineering, vol 19, no. 11, pp. 1015-1027, 1993.

Design Complexity: Closure and Convergence

Design Complexity: Closure and Convergence

Verifying deadlock-freedom is decidable in rings. [Farahat & Ebnenasir, ICDCS'12]

Aly Farahat and Ali Ebnenasir, **Local Reasoning for Global Convergence in Parameterized Rings**, In Proceedings of the 32nd International Conference on Distributed Computing Systems (ICDCS), pages 496-505, 2012.

Design Complexity: Closure and Convergence

Verifying deadlock-freedom is decidable in rings. [Farahat & Ebnenasir, ICDCS'12]

Aly Farahat and Ali Ebnenasir, **Local Reasoning for Global Convergence in Parameterized Rings**, In Proceedings of the 32nd International Conference on Distributed Computing Systems (ICDCS), pages 496-505, 2012.

Challenges of Verification and Synthesis of SS

- To design self-stabilization, three intertwined problems must be solved:
 - Closure
 - Deadlock Freedom
 - Livelock Freedom

Our Previous Work on Synthesis

Protocon: A Framework for Verification and Synthesis (V&S) of Self-Stabilization

http://asd.cs.mtu.edu/projects/protocon/

Example: Coloring on Trees

```
// L = number of levels in the tree.
constant L := 3:
variable x[(2^L-1)] < 3;
process Root [i < 1] {
         read: x[1]; read: x[2];
         write: x[0];
  (future & silent) (x[0] != x[1] & x[0] != x[2]);
process internalProcess[j < (2^{(L-1)-2)}] {
         let i := j + 1; let parent idx := (i-1)/2;
         let left idx := 2*(i+1)-1; let right idx := 2*(i+1);
         read: x[parent idx]; read: x[left idx];
         read: x[right idx];
         write: x[i];
    (future & silent)
 (x[parent idx] != x[i] && x[i] != x[left idx] && x[i] != x[right idx]);
 synthesized action: (x[i]==x[parent idx] --> x[i]:=x[i]+1;);
```

```
process Leaf [j < (2^(L-1))]{
    let i := j + (2^(L-1)-1);
    let parent_idx := (i-1)/2;
    read: x[parent_idx];
    write: x[i];
synthesized action:
    (x[i]==x[parent_idx] -->
    x[i]:=x[i]+1; ); }
```

Synthesis of Self-Stabilizing PDP

Example: Parity Protocol

Starting from any state, the <u>symmetric uni-ring</u> reaches states where all processes agree on a common odd/even parity.

 $I = \forall i \in \mathcal{N}: L(x_{i-1}, x_i) \text{ where } L(x_{i-1}, x_i) \equiv (|x_{i-1} - x_i| \%2 = 0) \text{ and } x_i \in \{0, 1, 2, 3\}$

You might be tempted to say

 $(|x_{i-1} - x_i| \mod 2) \neq 0 \rightarrow \text{do something};$

Example: Parity Protocol

Starting from any state, the <u>symmetric uni-ring</u> reaches states where all processes agree on a common odd/even parity.

 $I = \forall i \in \mathcal{N}: L(x_{i-1}, x_i) \text{ where } L(x_{i-1}, x_i) \equiv (|x_{i-1} - x_i| \%2 = 0) \text{ and } x_i \in \{0, 1, 2, 3\}$

You might be tempted to say

Is it deadlock-free for all ring sizes outside /?

 $(|x_{i-1} - x_i| \mod 2) \neq 0 \rightarrow x_i := x_{i-1} \oplus_4 2$

◄----- Is it livelock-free for all ring sizes outside *[*?

Livelock in a Ring Size Four

• $(|x_{i-1} - x_i| \mod 2) \neq 0 \rightarrow x_i := x_{i-1} \oplus 4$ 2

0|2

0|2

- Initial state of livelock: < 2, 0, 3, 1 >
- Interleaving: P₀, P₂, P₁, P₃, P₀, P₂, P₁, P₃

Undecidability of Verifying Livelock-Freedom

Theorem: [SSS'13, ACM TOCL'19] Verification of livelock-freedom of PDPs with constant-space, self-disabling and deterministic processes on symmetric uni-ring is undecidable.

- Observation: States are repeated in a livelock
 - i.e., Sequences of actions taken in each segment of the ring must set the stage for the execution of another sequence of actions, and this goes forever.

Proposed Approach: Local Characterization of Global Failures

Characterize global failures (e.g., livelock) in local state space of the template process in a topology-specific fashion.

Absence of local characterizations may imply correctness of PDP

 Methodology: Search for local characterization of global failures in local state space of template processes.

Graph-Theoretic Representations

- Facilitate reasoning in the local state space of the template process; i.e., local reasoning for global correctness.
- Parameterized Actions → Action Graph
- State predicates → Locality Graph

Actions as Action Graphs

- Acions of a protocol can be represented as a labeled directed multi-graph in the local state space of the template process
- *Vertices*: values in the domain of $x_i \in \{0, 1, 2, 3\}$
- Arcs: each arc (a, b, c) represents a local update of x_i to c if $x_{i-1}=a$ and $x_i=b$
 - E.g., (0, 1, 2) means if $x_{i-1}=0$ and $x_i = 1$ then update x_i to 2

$$(|x_{i-1} - x_i| \mod 2) \neq 0 \rightarrow x_i := x_{i-1} \oplus 4$$
 2

- Acions of a protocol can be represented as a labeled directed multi-graph in the local state space of the template process
- *Vertices*: values in the domain of $x_i \in \{0, 1, 2, 3\}$
- Arcs: each arc (a, b, c) represents a local update of x_i to c if x_{i-1} =a and x_i = b
 - E.g., (0, 1, 2) means if $x_{i-1}=0$ and $x_i = 1$ then update x_i to 2

$$(|x_{i-1} - x_i| \mod 2) \neq 0 \rightarrow x_i := x_{i-1} \oplus_4 2$$

(0, 1, 2)

- Acions of a protocol can be represented as a labeled directed multi-graph in the local state space of the template process
- *Vertices*: values in the domain of $x_i \in \{0, 1, 2, 3\}$
- Arcs: each arc (a, b, c) represents a local update of x_i to c if x_{i-1} =a and x_i = b
 - E.g., (0, 1, 2) means if $x_{i-1}=0$ and $x_i = 1$ then update x_i to 2

$$(|x_{i-1} - x_i| \mod 2) \neq 0 \rightarrow x_i := x_{i-1} \oplus_4 2$$

(0, 1, 2)

 X_{i-1}

- Acions of a protocol can be represented as a labeled directed multi-graph in the local state space of the template process
- *Vertices*: values in the domain of $x_i \in \{0, 1, 2, 3\}$
- Arcs: each arc (a, b, c) represents a local update of x_i to c if x_{i-1} =a and x_i = b
 - E.g., (0, 1, 2) means if $x_{i-1}=0$ and $x_i = 1$ then update x_i to 2

- Acions of a protocol can be represented as a labeled directed multi-graph in the local state space of the template process
- Vertices: values in the domain of x_i ∈ {0, 1, 2, 3}
- Arcs: each arc (a, b, c) represents a local update of x_i to c if x_{i-1} =a and x_i = b
 - E.g., (0, 1, 2) means if $x_{i-1}=0$ and $x_i = 1$ then update x_i to 2

Propagations as Closed Walks

Closed Walks in Action Graph

Closed walk/Propagation: sequence of consecutive actions

$$A_0: (|x_{i-1} - x_i| \mod 2) \neq 0 \rightarrow x_i := x_{i-1} \oplus A_2$$

A closed walk enabling another

Closed walk 1: (1, 2, 3),

Closed walk 2:

A closed walk enabling another

Closed walk 1: (1, 2, 3), Closed walk 2: (0, 3, 2),

A closed walk enabling another

Closed walk 1: (1, 2, 3), (3, 0, 1) Closed walk 2: (0, 3, 2),

A closed walk enabling another

Closed walk 1: (1, 2, 3), (3, 0, 1) Closed walk 2: (0, 3, 2), (2, 1, 0)

A closed walk enabling another

Closed walk 1 enables closed walk 2.

```
Closed walk 1: (1, 2, 3), (3, 0, 1)
Closed walk 2: (0, 3, 2), (2, 1, 0)
```

A closed walk enabling another

A closed walk of length *n* enables another closed walk of length *n* iff

j-th action of the first walk enables the *j*-th action of the second walk, for $1 \le j \le n$

Closed walk 1: (1, 2, 3), (3, 0, 1) Closed walk 2: (0, 3, 2), (2, 1, 0)

Circularly Enabling Closed Walks

• Closed walk 2 also enables closed walk 1.

Closed walk 1:

Closed walk 2: (0, 3, 2),

• Closed walk 2 also enables closed walk 1.

Closed walk 1: (1, 2, 3), Closed walk 2: (0, 3, 2),

Closed walk 2 also enables closed walk 1.

Closed walk 1: (1, 2, 3),

Closed walk 2: (0, 3, 2), (2, 1, 0)

Closed walk 2 also enables closed walk 1.

Closed walk 1: (1, 2, 3), (3, 0, 1) Closed walk 2: (0, 3, 2), (2, 1, 0)

2 <u>circularly</u> enabling closed walks, each of length 2.

Closed walk 1: (1, 2, 3), (3, 0, 1) Closed walk 2: (0, 3, 2), (2, 1, 0)

- A set of updates in a segment of the ring enables another set of updates and vice versa.
- Intuitively, we are observing same states being repeated.

Local Characterization of Global Livelocks

• Theorem: [SSS'13, ACM TOCL'19]

A unidirectional ring of symmetric processes has a livelock for a ring size $(m \times n)$

if and only if

There are *m* closed walks, each of length *n*, in the action graph that enable each other circularly

Semi-Algorithm for Livelock Detection and Construction

- $A_0: (|x_{i-1} x_i| \mod 2) \neq 0 \rightarrow x_i := x_{i-1} \oplus_4 2$
- Closed walk 1: (1, 2, 3), (3, 0, 1)
- Closed walk 2: (0, 3, 2), (2, 1, 0)
 - m=n=2; ring size is 4.

• Interleaving: P₀, P₂, P₁, P₃, P₀, P₂, P₁, P₃

State Predicates as Locality Graphs

Locality Graph of Parity Protocol

- Vertices: values in domain of x_i
- Arcs: there is an arc from vertex a to b iff L(a, b) holds.

$$\mathbb{Z} = \forall i \in \mathbb{Z}_{\mathbb{N}} : L(\mathbf{x}_{i-1}, \mathbf{x}_i) \text{ where } L(\mathbf{x}_{i-1}, \mathbf{x}_i) \equiv (|\mathbf{x}_{i-1} - \mathbf{x}_i|) = (|\mathbf{x}_{i$$

Locality Graph of Parity Protocol

- Vertices: values in domain of x_i
- Arcs: there is an arc from vertex a to b iff L(a, b) holds.

$$I = \forall i \in \mathbb{Z}^+ : L(\mathbf{x}_{i-1}, \mathbf{x}_i) \text{ where } L(\mathbf{x}_{i-1}, \mathbf{x}_i) \equiv (|\mathbf{x}_{i-1} - \mathbf{x}_i| \%2 = 0)$$

 $\mathbf{x}_i \in \mathbb{Z}_4 = \{0, 1, 2, 3\}$

Synthesis of SS on Uni-Ring

Decidability of Synthesis

• Theorem: [IEEE TSE 2019]

Synthesizing SS PDPs on symmetric uni-rings is decidable for deterministic, constant-space and self-disabling processes.

• Theorem: (necessary and sufficient condition) [IEEE TSE 2019]

There is a PDP p that self-stabilizes to $I = \forall i \in \mathcal{N}$: $L(\mathbf{x}_{i+1}, \mathbf{x}_i)$

if and only if

There is some value γ in the domain of x_i such that $L(\gamma, \gamma)$ holds (i.e., self-loops), and the action graph of ρ is a directed spanning tree rooted at γ .

[TSE 2019] Ali Ebnenasir and Alex Klinkhamer, **Topology-specific synthesis of self stabilizing parameterized systems with constant-space processes**, *IEEE Transactions on Software Engineering*, vol. 47, no. 3, pp. 614–629, 2019.

• Step 1: Create the locality graph of

$$L(x_{i-1}, x_i) = ((|x_{i-1} - x_i| \text{mod } 2) = 0), \text{ where } x_i \in \{0, 1, 2, 3\}$$

• Step 1: Create the locality graph of

$$L(x_{i-1}, x_i) = ((|x_{i-1} - x_i| \text{mod } 2) = 0), \text{ where } x_i \in \{0, 1, 2, 3\}$$

- Step 2: Induce subgraph L' using arcs that participate in some cycle
 - E.g., in the case of parity, all arcs participate in some cycle; hence kept

- Step 3: arbitrarily pick a node γ and form a spanning tree with γ as its root
 - Backward reachability from root

• Step 4: add arcs from unreachable nodes to γ

• Step 4: add arcs from unreachable nodes to γ

Intuitively, this spanning tree captures how "local updates" should be performed to ensure "global stabilization".

- Step 5: transform the spanning tree to an action graph by labeling its arcs
- Labeling Method:
 - For each arc (a, c), label it with a value b iff L(a,b) is false and b is not a parent of a in the spanning tree

- Step 5: transform the spanning tree to an action graph by labeling its arcs
- Labeling Method:
 - For each arc (a, c), label it with a value b iff L(a,b) is false and b is not a parent of a in the spanning tree

a = 0 and b = 1 and $c = 1 \Rightarrow (|0-1| \mod 2) != 0$, but b = c; unacceptable

- Step 5: transform the spanning tree to an action graph by labeling its arcs
- Labeling Method:
 - For each arc (a, c), label it with a value b iff L(a,b) is false and b is not a parent of a in the spanning tree

```
a = 0 and b = \underline{1} and c = 1 \Rightarrow |0-1| \mod 2 != 0, but b = c; unacceptable a = 0 and b = 3 and c = 1 \Rightarrow |0-3| \mod 2 != 0; acceptable
```


- Step 5: transform the spanning tree to an action graph by labeling its arcs
- Labeling Method:
 - For each arc (a, c), label it with a value b iff L(a,b) is false and b is not a parent of a in the spanning tree

```
a = 0 and b = \underline{1} and c = 1 \Rightarrow |0-1| \mod 2 != 0, but b = c; unacceptable a = 0 and b = \underline{3} and c = 1 \Rightarrow |0-3| \mod 2 != 0; acceptable a = 2 and b = \underline{3} and c = 1 \Rightarrow |2-3| \mod 2 != 0; acceptable
```


- Step 5: transform the spanning tree to an action graph by labeling its arcs
- Labeling Method:
 - For each arc (a, c), label it with a value b iff L(a,b) is false and b is not a parent of a in the spanning tree

```
a = 0 and b = 1 and c = 1 \Rightarrow |0-1| \mod 2 != 0, but b = c; unacceptable a = 0 and b = 3 and c = 1 \Rightarrow |0-3| \mod 2 != 0; acceptable a = 2 and b = 3 and c = 1 \Rightarrow |2-3| \mod 2 != 0; acceptable a = 3 and b = 0 and c = 1 \Rightarrow |3-0| \mod 2 != 0; acceptable
```


- Step 5: transform the spanning tree to an action graph by labeling its arcs
- Labeling Method:
 - For each arc (a, c), label it with a value b iff L(a,b) is false and b is not a parent of a in the spanning tree

```
a = 0 and b = \underline{1} and c = 1 \Rightarrow |0-1| \mod 2 != 0, but b = c; unacceptable a = 0 and b = \underline{3} and c = 1 \Rightarrow |0-3| \mod 2 != 0; acceptable a = 2 and b = \underline{3} and c = 1 \Rightarrow |2-3| \mod 2 != 0; acceptable a = 3 and b = \underline{0} and c = 1 \Rightarrow |3-0| \mod 2 != 0; acceptable a = 3 and b = 2 and c = 1 \Rightarrow |3-2| \mod 2 != 0; acceptable
```


- Step 5: transform the spanning tree to an action graph by labeling its arcs
- Labeling Method:
 - For each arc (a, c), label it with a value b iff L(a,b) is false and b is not a parent of a in the spanning tree

- Proof of stabilization:
 - Deadlock-freedom outside / :
 - Each process is enabled iff $L'(x_{i-1}, x_i)$ is false
 - Closure of / in protocol actions:
 - no action is enabled where $L'(x_{i-1}, x_i)$ is true
 - Livelock-freedom outside / :
 - The only type of closed walk includes (γ, b, γ) , which does not enable itself circularly

Synthesis for Constant Space

Example: Agree on a common Parity in uni-ring

$$I = \forall i \in \mathbb{Z}^+ : L(x_{i-1}, x_i) \text{ where } L(x_{i-1}, x_i) \equiv (|x_{i-1} - x_i| \%2 = 0) \ x_i \in \mathbb{Z}_3 = \{0, 1, 2\}$$

[TSE 2019] Ali Ebnenasir and Alex Klinkhamer, **Topology-specific synthesis of self stabilizing parameterized systems with constant-space processes**, *IEEE Transactions on Software Engineering*, vol. 47, no. 3, pp. 614–629, 2019.

Related Work on V&S of Parameterized Protocols

- Verification and Synthesis (V&S) of PDP are in general undecidable problems.
 - Pairwise synthesis: safety properties and local liveness in symmetric systems [Attie and Emerson 1998]
 - Abstraction methods: create finite approximations of PDP (e.g., counter abstraction) and conduct verification [Pnueli et al. 2002]
 - Regular model checking: use regular languages to model PDP [Abdulla et al. 2004]
 - Invisible invariants/ranking: generate implicit local invariants and generalize [Fang et al. 2006]
 - Network invariants: prove safety by parallel compositions that are invariant to correctness [Wolper and Lovinfosse 1989]
 - Neo [Matthews, Bingham, Sorin 2016] expands this idea for topology-specific verification of safety properties
 - Parameterized synthesis: based on small model theorems (i.e., cutoff) and SMT-based bounded synthesis [Jacobs and Bloem 2012]
 - Well-founded proof spaces: prove safety and liveness of infinite traces by showing that traces terminate [Farzan et al. 2016]
 - Population protocols: anonymous processes; invariants are formed of counting constraints; mostly consider clique topology [Esparza et al. 2018]
 - Synthesis of Threshold Automata (TA): complete sketches of TA using counter abstraction [Lazi et al. 2018]
 - General topology (in some cases a clique) and temporal properties.
 - Correctness of <u>a finite abstract model</u> implies correctness of PDP.
 - Mostly focus on safety properties and local liveness.
 - Few of them focus on self-stabilization.

V&S of Unbounded Protocols

Domain Size of Variables \ Number of Processes	Fixed	Unbounded
Fixed	Fixed-size Protocols	Unbounded Variable Protocols
Unbounded	Constant-space Parameterized Protocols	Unbounded Parameterized Protocols (FMCAD 2022)

Protocol	Topology	Property	Verified/Synthesized	Unboundedness
Leader Election	Uni-Ring	Livelock-freedom	Verified	Processes
Token Passing	Uni-Ring	Livelock-freedom	Verified	Processes
Agreement	Uni-Ring	Livelock-freedom	Verified	Processes
Coloring	Uni-Ring	Livelock-freedom	Verified	Processes
Parity	Uni-Ring	Self-Stabilization	Synthesized	Processes/Variable Domain
Agreement	Uni-Ring	Self-Stabilization	Synthesized	Processes/Variable Domain
Sum-Not-2	Uni-Ring	Self-Stabilization	Synthesized	Processes
Broadcast	Tree	Self-Stabilization	Synthesized	Processes
Coloring	Tree	Self-Stabilization	Synthesized	Processes
MIS	Tree	Self-Stabilization	Synthesized	Processes
Min/Max	Tree	Self-Stabilization	Synthesized	Processes
Sum-Not-2	Uni-Ring	LeadsTo	Synthesized	Processes
Agreement	Uni-Ring	LeadsTo	Synthesized	Processes
Parity	Uni-Ring	LeadsTo	Synthesized	Processes

Open Problems

- V&S for
 - Protocols with multiple symmetric families
 - Property:
 - Fault tolerance (e.g., failsafe, nonmasking, masking)
 - Characterize faults in action graphs?
 - Calculate fault-span locally?
 - Security and privacy (e.g., tamper evidence, access control, anonymity, etc.)
 - Local characterization of security breaches?
 - Interplay of fault tolerance and security aspects for template processes
 - General LTL properties (e.g., LeadsTo, Dwyer's Specification patterns)

Open Problems

- V&S for
 - Property:
 - General temporal logic properties
 - LeadsTo (FMCAD 2019, IEEE TSE 2021)
 - Dwyer's Specification patterns?
 - Topology:
 - Mesh
 - Katz graph

Property-Preserving Compositions

- Problem Statement
 - Input: Two PDPs P₁ and P₂ with
 - elementary topologies T₁ and T₂
 - invariants I₁ and I₂
 - <u>assumption</u>: P₁ and P₂ satisfy a global property φ respectively from I₁ and I₂ for any number of processes
 - **Output**: PDP P_c with a topology T_c and an invariant I_c such that
 - T_c is a (hierarchical/sequential/parallel/superposition) compostion of T₁ and T₂, and
 - P_c is a (synchronous/asynchronous) composition of P₁ and P₂ which satisfies φ from I_c where
 - I_c is a conjunctive invariant $I_c = (I_1 \land I_2)$;
 - I_c is a disjunctive invariant I_c = (I₁ ∨ I₂);
 - I_c is a implicative invariant $I_c = (I_1 \Rightarrow I_2)$, or $I_c = (I_2 \Rightarrow I_1)$.

Mesh

Information flow-based sufficient conditions.

HyperRing

Superposed Trees

Variable-Space Processes

Scalable composition of resilient ring and chain generating a scalable tube that can grow in depth and diameter.

Acknowledgement

- Former graduate students:
 - Dr. Alex Klinkhamer
 - Google (Mountain View, CA)
 - Dr. Aly Farahat
 - Intuitive Surgical Inc. (Bay Area, CA)
 - Dr. Amer Tahat
 - Pennsylvania State University
 - Dr. Reza Hajisheykhi (co-advised)
 - Rubrik Inc.
 - Several other M.Sc. students
- NSF grants CCF-1116546 and CCF-0950678
- Michigan Tech's Research Excellence Fund