Topology and Property-Specific
Verification and Synthesis (V&S) of
Parameterized Distributed Protocols (PDP)

Ali Ebnenasir
aebnenas@mtu.edu

Department of Computer Science
College of Computing
Michigan Technological University
Houghton M| 49931

http://asd.cs.mtu.edu/

Modeling Parameterized Distributed Protocols (PDP)

Dijkstra’s token passing:

m,: Template process 2 «
Actiong @ Xy = X1

- Process P; has a variable x; € 7y ={0, 1, ...

e
-
-
=
-
-

- N denotes the total number of processes
- Addition and subtraction are done in modulo N

self-disabling actio

7t,. Template process 1
Action; : x; # X4

S
S
~

Legend:

O Process/Node

— Read from

~
~
~
~
~
~
~
~
S
~

~N
N\
~

ns

.
-
-
-
-
-
e
-
-

Family 2: just one process

-
-
-
-
-
-
-
-

N-1}

= Y

Set of good
states;
a.k.a. invariant.

Family 1: N-1 symmetric processes

Significance of PDPs

From System on Chip, to multithreaded programs and large
scale network protocols.

Vision: Topology and Property-Specific
Verification and Synthesis (V&S) of PDP

» Solve V&S for a set of elementary topologies and determine necessary and/or

sufficient conditions for their property-preserving composition.
« Elementary topologies such as ring, chain, tree

Property ¢ Topology

Verifier/
Synthesizer PDP b. that
for ¢ and r—:> p1 tha
/\ Topology satisfies :>
vﬂ - o
I 4

L

. Compositionality Composed
Repository of Topology . Theorems/Rules PDP p that
and Property-Specific satisfies ¢
Verification and Synthesis Nerition ona
Algorithms/Tools :V'\ Synthesizer PDP p,, that complex
f)::.r » and [:> satisfies |:> topology
Topology @ onT, _/

v ™ 7

Start With Self-Stabilizing Uni-directional Rings

* Topology = Uni-directional Ring (Uni-Ring)
» Uni-directional topologies are important in wireless (mobile) networks
« Some communication links may become uni-directional due to RF range constraints

 Uni-directional ring (uni-ring) is a simple but useful model of computation
Information flows only in one direction.

» Results can be useful for any topology that contains (uni-)rings

» Property = Self-stabilization (which entails livelock-freedom, deadlock-
freedom)

* Important applications in networks, multi-agent systems and socioeconomics

Related Work

 Verification of temporal logic properties for parameterized protocols is
undecidable. [apt and kozen 1986]
* Verification problem remains undecidable even for uni-rings. [suzuki 1988]

« What if we make the model stronger and focus on a specific property?
« self-disabling, constant-space and deterministic processes
» property: self-stabilization of symmetric uni-rings
« conjunctive invariants

» Decidability of the V&S problems?

[Apt and Kozen 1986] K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett.

22, 6 (1986), pp. 307-309.
[Suzuki 1988] I.Suzuki. 1988. Proving properties of a ring of finite-state machines. Inform. Process. Lett. 28, 4 (Jul. 1988), 213-214.

V&S of Parameterized Self-Stabilizing Symmetric
Uni-Directional Rings with
Constant-Space Processes

Self-Stabilization (SS)

“The ability of a distributed system to resume its legal behavior in a finite number of steps regardless of its initial
configuration/state” [Dijkstra'74, Arora and Gouda'93]

Self-stabilization = closure + convergence

o

transient fauﬁ

Legitimate States (Invariant)

] >
transient fault o

legitimate states

lllegitimate states

[1] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control. Communications of the ACM, vol. 17, no. 11, pp. 643-644, 1974

[2] A. Arora and M. Gouda, Closure and Convergence: A foundation of fault-tolerant computing. /[EEE Transactions on Software Engineering, vol 19, no. 11, pp. 1015-1027, 1993.

Design Complexity: Closure and Convergence

Legitimate States (Invariant)

legitimate states

Closure violating transition/action llegitimate states

Desigh Complexity: Closure and Convergence

Global\deadlock

Legitimate States (Invariant)

legitimate states

Closure violating transition llegitimate states

Verifying deadlock-freedom is decidable in rings. [Farahat & Ebnenasir, ICDCS’12]

Aly Farahat and Ali Ebnenasir, Local Reasoning for Global Convergence in Parameterized Rings, In Proceedings of the 32nd International
Conference on Distributed Computing Systems (ICDCS), pages 496-505, 2012.

Design Complexity: Closure and Convergence

DeadIQCk state

Global livelock

Legitimate States (Invariant)

legitimate states

Closur/é‘ violating transition llegitimate states

Verifying deadlock-freedom is decidable in rings. [Farahat & Ebnenasir, ICDCS’12]

Aly Farahat and Ali Ebnenasir, Local Reasoning for Global Convergence in Parameterized Rings, In Proceedings of the 32nd International
Conference on Distributed Computing Systems (ICDCS), pages 496-505, 2012.

Challenges of Verification and Synthesis of SS

* To design self-stabilization, three intertwined problems must
be solved:

e Closure
 Deadlock Freedom

* Livelock Freedom

Our Previous Work on
Synthesis

Legitimate
States / A
> Actions
Variables and Synthesis Algorithm >
Their Domains
>

|

Topology k processes
(k is fixed)

Protocon: A Framework for Verification and Synthesis (V&S) of Self-Stabilization

http://asd.cs.mtu.edu/projects/protocon/

Example: Coloring on Trees

/I L = number of levels in the tree. _
process Leaf [j < (2

= 2 L-1))K
constant L := 3;
] leti:=j+ (2*(L-1)-1);
variable x[(2*L-1)] < 3;

process Root [i < 1] { let parent_idx := (i-1)/2;

read: x[1]; read: x[2]; read: x[parent_idx]
write: x[0]; write: x]i];
(future & silent) (x[0] '= x[1] && x[0] !=x[2]); } synthesized action:
process internalProcess[j < (22(L-1)-2)] { (x[i]==x[parent_idx] -->
leti:=j+ 1; let parent_idx := (i-1)/2; x[i]:=x[i]+1;); }

let left_idx := 2*(i+1)-1; let right_idx := 2*(i+1);
read: x[parent_idx]; read: x[left idx];
read: x[right_idx];
write: x[i];
(future & silent)
(x[parent_idx] != x[i] && x[i] = x[left_idx] && x[i] != x[right_idx]);

synthesized action: (x[i]==x[parent_idx] --> x[i]:=x[i]+1;); }

Synthesis of Self-Stabilizing PDP

Legitimate
States

Variables and
Their Domains

-

Synthesis Algorithm

/

Parameterized Actions

Specific Topology (e.g., uni-directional ring)

Example: Parity Protocol

Starting from any state, the symmetric uni-ring reaches states where all processes

agree on a common odd/even parity.

J=Vi € N:L(X.q,X;) where Lx.,,x)=(x,-x|%2=0) andx; € {0, 1, 2, 3}

Pn.1 Py
XN-1 > Xo

Variable
x; € {0,1, 2, 3}
—_—

[=VI E N: (lX,’_1 = X,'| %2 =O)

—

L(Xi1, %) =
(%1 - x| %2 =0)

-

Q)

You might be tempted to say
(|Xi.1 - x;| mod 2) # 0 = do something;

Synthesis
Algorithm

~

Parameterized
Actions of SS Protocol

—

Your solution?

Example: Parity Protocol

Starting from any state, the symmetric uni-ring reaches states where all processes
agree on a common odd/even parity.

J=Vi € N:L(X.q,X;) where Lx.,,x)=(x,-x|%2=0) andx; € {0, 1, 2, 3}

PN-1 I30
XN_1 >
Variable / \
x; € {0,1, 2, 3}
—
Parameterized
J Vi € 7+ (s - x| %2 =0) Synthesis Actions of SS Protocol
Algorithm .
— Your solution?
L(X1, %) =
(x4 = x| %2 =0)
\ J

Is it deadlock-free for all ring sizes outside 7 ?

-
—_————_
-

____________ Is it livelock-free for all ring sizes outside 7 ?

Livelock in a Ring Size Four

* (X1 -xi|mod2)#0 2 X = Xy 4 2 :

* Initial state of livelock: <2, 0, 3, 1 >
i InterleaVing: Po, PQ, P1, P3, Po, PQ, P-|, P3

<2,0,3,1>, _ Q E

<3, 0, 3, 1>,
<3,0, 2, 1>,
<3,1,2,1>,<3,1,2,0>,<2,1,2,0>, <2, 1, 3, 0>, <2, 0, 3, 0>

--
L]
—
--
--
-y
-~
--
--
-y
-~
~-
-
---~~
--
--
-
—
--
--
L]
—
--
--
-y
-~
-~

Undecidability of Verifying Livelock-Freedom

e Theorem: sss'13 acmtocL19 Verification of livelock-freedom of PDPs with constant-

space, self-disabling and deterministic processes on symmetric uni-ring is undecidable.

e Observation: States are repeated in a livelock

e i.e., Sequences of actions taken in each segment of the ring must set the stage for the execution of
another sequence of actions, and this goes forever.

[SSS’13] Alex Klinkhamer and Ali Ebnenasir, Verfiying Livelock Freedom of Parameterized Rings and Chains, 15th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2013).
[ACM TOCL'19] A. Klinkhamer and A. Ebnenasir, “On the verification of livelock-freedom and self-stabilization on parameterized rings,” ACM Transactions on Computational Logic, vol. 20, no. 3, pp. 1-36, 2019.

Proposed Approach:
Local Characterization of Global Failures

Characterize global failures (e.g., livelock) in local state space of the
template process in a topology-specific fashion.

Absence of local characterizations may imply correctness of PDP

* Methodology: Search for local characterization of global failures in local
state space of template processes.

Graph-Theoretic Representations

« Facilitate reasoning in the local state space of the template process; i.e., local
reasoning for global correctness.

« Parameterized Actions — Action Graph
« State predicates — Locality Graph

Actions as Action Graphs

Action Graph

e Acions of a protocol can be represented as a labeled directed multi-graph
in the local state space of the template process

e Vertices: values in the domain of x; € {0, 1, 2, 3}

e Arcs: each arc (a, b, c) represents a local update of x; tocif x_y=aand x,=b
e E.g, (0,1, 2) means if x,_4=0 and x; = 1 then update x; to 2

(|X,-_1-X,-|m0d 2)#0 —)Xi = Xi—1 694 2

1[3 0|2
—

Jo &

113 0|2

Action Graph

e Acions of a protocol can be represented as a labeled directed multi-graph
in the local state space of the template process

e Vertices: values in the domain of x; € {0, 1, 2, 3}

e Arcs: each arc (a, b, c) represents a local update of x; toc if x_j=aand x;,= b
e E.g., (0,1, 2) means if x_4=0 and x; = 1 then update x; to 2

(lX,‘_1 - X,'l mOd 2) # 0 9 Xi = Xi—1 694 2
(0, 1, 2)

1[3 0|2

Jo

113 0|2

Action Graph

e Acions of a protocol can be represented as a labeled directed multi-graph
in the local state space of the template process

e Vertices: values in the domain of x; € {0, 1, 2, 3}

e Arcs: each arc (a, b, c) represents a local update of x; toc if x_j=aand x;,= b
e E.g., (0,1, 2) means if x_4=0 and x; = 1 then update x; to 2

(lX,‘_1 - X,'l mOd 2) # 0 9 Xi = Xi—1 694 2
(0, 1, 2)

1[3 0|2

Jo

113 0|2

Action Graph

e Acions of a protocol can be represented as a labeled directed multi-graph
in the local state space of the template process

e Vertices: values in the domain of x; € {0, 1, 2, 3}

e Arcs: each arc (a, b, c) represents a local update of x; toc if x_j=aand x;,= b
e E.g., (0,1, 2) means if x_4=0 and x; = 1 then update x; to 2

(lX,‘_1'X,’|mOd 2)#0 9Xi = Xi—1 694 2

(0, 1, 2)
Xi-1 Xi
113 0[2

113 0|2

Action Graph

e Acions of a protocol can be represented as a labeled directed multi-graph
in the local state space of the template process

e Vertices: values in the domain of x; € {0, 1, 2, 3}

e Arcs: each arc (a, b, c) represents a local update of x; toc if x_j=aand x;,= b
e E.g., (0,1, 2) means if x_4=0 and x; = 1 then update x; to 2

(lX,‘_1'X,’|mOd 2)#0 9Xi = Xi—1 694 2

(0, 1, 2)
Xi_1 Xi set x;to
13 W

113 0|2

Propagations as Closed Walks

Closed Walks in Action Graph

o Closed walk/Propagation: sequence of consecutive actions
AO: (lXi-1 ‘X,'l mOd 2)#0 9Xi = Xi-1 EB4 2

T o @

Closed Walks 2 Closed Walks 1

Enabling Closed Walks

e A closed walk enabling another

0f2

& O & &

Closed walk 1: (1, 2, 3),
Closed walk 2:

Enabling Closed Walks

e A closed walk enabling another

113 02

& O & &

Closed walk 1: (1, 2, 3),
Closed walk 2: (0, 3, 2),

Enabling Closed Walks

e A closed walk enabling another

113 02
& & & ¢
0|2
Closed walk 1: (1, 2, 3), (3, 0, 1)
Closed walk 2: (0, 3, 2),

Enabling Closed Walks

e A closed walk enabling another
113 02
&6 d &
0|2

113

Closed walk 1: (

1,2,3), (3,0,1)
Closed walk 2: (0, 3, 2), (2, 1, 0)

Enabling Closed Walks

e A closed walk enabling another

1|3

CECINORIN

113

Closed walk 1xenables closed walk 2.

Closed walk 1: (

1,2,3), (
Closed walk 2: (0,

2,3),(@3,0,1)
3,2),2,1,0)

Enabling Closed Walks

e A closed walk enabling another

113 02
— —

© B3O

113 0[2

A closed walk of length n enables another closed walk of length n
iff
Jj-th action of the first walk enables the j-th action of
the second walk, for 1<j<n

Closed walk 1: (1,

1,2,3),(3,0,1)
Closed walk 2: (0, 3 2,1

3 1
,2),(2,1,0)

Circularly Enabling Closed Walks

* Closed walk 2 also enables closed walk 1.

1|3

560 O @

Closed walk 1:
Closed walk 2: (0, 3, 2),

Circularly Enabling Closed Walks

* Closed walk 2 also enables closed walk 1.

113 02

5 O O &

Closed walk 1: (

1,)
Closed walk 2: (0,

2’)
3, 2),

3
2

Circularly Enabling Closed Walks

* Closed walk 2 also enables closed walk 1.

oo OIG

Closed walk 1: (1, 2, 3),
Closed walk 2: (0, 3, 2), (2, 1, 0)

Circularly Enabling Closed Walks

 Closed walk 2 also enables closed walk 1.
113 0|2
02

1/3

Closed walk 1: (

1,2,3), (3,0,1)
Closed walk 2: (0, 3, 2), (2, 1, 0)

Circularly Enabling Closed Walks

113 02
113 0[2
2 circularly enabling closed walks, each of length 2.

Closed walk 1: (1, 2, 3), (3, 0, 1) - A set of updates in a segment of the ring enables
Closed walk 2: (0’ 3’ 2)’ (2’ 1’ 0) another set of updates and vice versa.
T - Intuitively, we are observing same states being repeated.

Local Characterization of Global Livelocks

e Theorem: [sss13, ACMTOCL'19]
A unidirectional ring of symmetric processes has a livelock for a ring size (m x n)
if and only if
There are m closed walks, each of length n, in the action graph that
enable each other circularly

[SSS’13] Alex Klinkhamer and Ali Ebnenasir, Verfiying Livelock Freedom of Parameterized Rings and Chains, 15th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2013).
[ACM TOCL'19] A. Klinkhamer and A. Ebnenasir, “On the verification of livelock-freedom and self-stabilization on parameterized rings,” ACM Transactions on Computational Logic, vol. 20, no. 3, pp. 1-36, 2019.

Semi-Algorithm for Livelock Detection and Construction

113
’Ao: (lX,’_1'X,’|mOd 2)#0 9Xi i— Xi-1 EB4 2 o~
« Closed walk 1: (1, 2, 3), (3, 0, 1) Ci @
« Closed walk 2: (0, 3, 2), (2, 1, 0) 13
* m=n=2; ring size is 4.
« Initial state of livelock: < 2,0, 3, 1 > ol

« Interleaving: Py, P,, P4, Ps, Py, Py, P4, Ps

<2,0,3,1>, _ Q E

<3, 0, 3, 1>,
<3,0, 2, 1>,
<3,1,2,1>,<3,1,2,0>,<2,1,2,0>, <2, 1, 3, 0>, <2, 0, 3, 0>

--
L]
—
--
--
-y
-~
--
--
-y
-~
~-
-
---~~
--
--
-
—
--
--
L]
—
--
--
-y
-~
-~

State Predicates as Locality Graphs

Locality Graph of Parity Protocol

Vertices: values in domain of x;
Arcs: there is an arc from vertex a to b iff L(a, b) holds.

I = Vi € ZN y L(X,‘_1 : Xi) where L(X,-_1) X,-) — (lX,-_1 = X,-l %2 =0)

X; € Z3={0, 1, 2}; i.e., constant-space processes

L(0, 0) L(1, 1)

L(O, 2) L(O, 1) = false

Locality Graph of Parity Protocol

Vertices: values in domain of x;

. Arcs: there is an arc from vertex a to b iff L(a, b) holds.

J=Vi € 7Z*:L(X.1,X;) where L(x.i,X;) = (|x.q - x| %2 =0)
X; € Z,={0,1, 2, 3}

)
O
S

I =Vie N:L(Xq,X)
Specifies legitimate states.

Variable x; has a
constant domain.

Synthesis of SS on Uni-Ring

-

-

Create Locality
Graph of L(X.1, X;)

~

/

J

o

Synthesize Action
Graph of a PDP

Self-stabilizing to
Vie L(Xq,X)

Parameterized
Actions

>
self-stabilizing for

1. an arbitrary number of
processes, and

2. domain size remains
constant.

Decidability of Synthesis

e ITheorem: [IEEE TSE 2019]

Synthesizing SS PDPs on symmetric uni-rings _is decidable for deterministic, constant-space and
self-disabling processes.

e Theorem: (necessary and sufficient condition) peze rse 2019

There is a PDP p that self-stabilizes to / = Vi € N: L(X:q1, X;)
if and only if

There is some value y in the domain of x; such that L(y, y) holds (i.e., self-loops), and
the action graph of pis a directed spanning tree rooted at y.

[TSE 2019] Ali Ebnenasir and Alex Klinkhamer, Topology-specific synthesis of self stabilizing parameterized systems with constant-space processes, /[EEE Transactions on
Software Engineering, vol. 47, no. 3, pp. 614—629, 2019.

Synthesis Algorithm

o Step 1: Create the locality graph of

L(X,’_1 , X,') - ((lX,’_1 = X,' | mOd 2) =0), Where X; € {O, 1, 2, 3}

FoORNGolCY.
L(0,0) L(2,2) L(1,1) L(3,3)

Synthesis Algorithm

o Step 1: Create the locality graph of

L(X,’_1 , X,') - ((lX,’_1 = X,' | mOd 2) =O), Where X; € {O, 1, 2, 3}

There are four self-loops

¥

L(2,2) L(1,1) L(3,3)

Synthesis Algorithm

e Step 2: Induce subgraph L’ using arcs that participate in some
cycle

e E.g., inthe case of parity, all arcs participate in some cycle; hence kept

G2 ¢ OL__¢U

Synthesis Algorithm

o Step 3: arbitrarily pick a node y and form a spanning tree with y as
its root

o Backward reachability from root

Synthesis Algorithm

o Step 4: add arcs from unreachable nodes to y

0/@/@@

Synthesis Algorithm

e Step 4: add arcs from unreachable nodes to y

0/@/@@

Intuitively, this spanning tree captures how “local updates” should be performed
to ensure “global stabilization”.

Synthesis Algorithm

o Step 5: transform the spanning tree to an action graph by labeling its arcs
e Labeling Method:

e Foreach arc (a, c), label it with a value b iff L(a,b) is false and b is not a parent of a in the
spanning tree

Synthesis Algorithm

o Step 5: transform the spanning tree to an action graph by labeling its arcs
e Labeling Method:

e Foreach arc (a, ¢), label it with a value b iff L(a,b) is false and b is not a parent of a in the
spanning tree

a=0 andb=1 andc=1 = (|0-1| mod 2) != 0, but b=c; unacceptable

©

Synthesis Algorithm

o Step 5: transform the spanning tree to an action graph by labeling its arcs
e Labeling Method:

e Foreach arc (a, c¢), label it with a value b iff L(a,b) is false and b is not a parent of a in the
spanning tree

a=0 andb=1 andc=1 = |0-1| mod 2 !=0, but b=c; unacceptable
a=0 andb=3 andc=1 = |0-3| mod 2 != 0; acceptable

©

Synthesis Algorithm

o Step 5: transform the spanning tree to an action graph by labeling its arcs
e Labeling Method:

e Foreach arc (a, c¢), label it with a value b iff L(a,b) is false and b is not a parent of a in the
spanning tree

a=0 andb=1 andc=1 = |0-1| mod 2 !=0, but b=c; unacceptable

a=0 andb=3 andc=1 = |0-3| mod 2 != 0; acceptable
a=2 andb=3 andc=1 = |2-3| mod 2 != 0; acceptable

©

Synthesis Algorithm

o Step 5: transform the spanning tree to an action graph by labeling its arcs
e Labeling Method:

e Foreach arc (a, ¢), label it with a value b iff L(a,b) is false and b is not a parent of a in the
spanning tree

a=0 andb=1 andc=1 = |0-1| mod 2 !=0, but b=c; unacceptable
a=0 andb=3 andc=1 = |0-3| mod 2 != 0; acceptable
a=2 andb=3 andc=1 = |2-3| mod 2 != 0; acceptable

a=3 andb =0 andc=1 = [3-0| mod 2 != 0; acceptable

Synthesis Algorithm

o Step 5: transform the spanning tree to an action graph by labeling its arcs
e Labeling Method:

e Foreach arc (a, c¢), label it with a value b iff L(a,b) is false and b is not a parent of a in the
spanning tree

and b =1 and c=1

and b =3 and c=1
and b =3 and c=1
and b =0 and c=1
and b =2 and c=1

|0-1| mod 2 != 0, but b=c; unacceptable
|0-3| mod 2 != 0; acceptable
|2-3| mod 2 != 0; acceptable
|3-0| mod 2 != 0; acceptable
|3-2| mod 2 != 0; acceptable

VIR (VR AV B OV I OV
Il
W w NN Oo

b e 4y

3 3

o O

Synthesis Algorithm

o Step 5: transform the spanning tree to an action graph by labeling its arcs
e Labeling Method:

e Foreach arc (a, c¢), label it with a value b iff L(a,b) is false and b is not a parent of a in the

spanning tree

3 3

0l

a=0 andb=1 andc=1 = |0-1| mod 2 !=0, but b=c; unacceptable
a=0 andb=3 andc=1 = |0-3| mod 2 != 0; acceptable
a=2 andb=3 andc=1 = |2-3| mod 2 != 0; acceptable
a=3 andb =0 andc=1 = [3-0| mod 2 != 0; acceptable
a=3 andb=2 andc=1 = [3-2| mod 2 != 0; acceptable
a=1 andb=0 andc=1 = [1-0| mod 2 != 0; acceptable
a=1 andb=2 andc=1 = [1-2| mod 2 != 0; acceptable

o O

Synthesis Algorithm

e Proof of stabilization:
e Deadlock-freedom outside / :
e Each process is enabled iff L’(x;4 , X)) is false
e Closure of /in protocol actions:
e Nno action is enabled where L’(x;.1 , X)) is true
e Livelock-freedom outside /:

e The only type of closed walk includes (y, b, y) , which does not enable itself circularly

(X.1=0) A (x;=3) 2> X :=1
(x.1=2) A (X,=3) 2> X =1 3 3
X.1=3) A ((xi=0) \/ (xi=2)) > x;:=1
Xa=1) A (=0 (xi=2) > x:=1

02 0|2 @

Synthesis for Constant Space

Example: Agree on a common Parity in uni-ring
J=Vi € 7*:L(X.1,X;) where L(x.,X;) = (|X.1 - x| %2 =0) x; € Z3={0, 1, 2}

x; € Z3={0, 1, 2}

9
O

‘ Locality graph

 —

-

_

Synthesis
Algorithm
for
Constant-
Space
Uni-Ring

[TSE 2019]

~

J

1

1 O

Action graph

Parameterized actions:
Xi_1=1l\Xi=2 — Xi :=0

Xi-1:2/\ Xi:1 =2 Xi::O

Xi_1:OA Xi:1 — Xi::O

[TSE 2019] Ali Ebnenasir and Alex Klinkhamer, Topology-specific synthesis of self stabilizing parameterized systems with constant-space processes, IEEE Transactions on Software

Engineering, vol. 47, no. 3, pp. 614-629, 2019.

Related Work on V&S of Parameterized Protocols

 Verification and Synthesis (V&S) of PDP are in general undecidable problems.

Pairwise synthesis: safety properties and local liveness in symmetric systems [Attie and Emerson 1998]

Abstraction methods: create finite approximations of PDP (e.g., counter abstraction) and conduct
verification [Pnueli et al. 2002]

Regular model checking: use regular languages to model PDP [Abdulla et al. 2004]
Invisible invariants/ranking: generate implicit local invariants and generalize [Fang et al. 2006]

Network invariants: prove safety by parallel compositions that are invariant to correctness [Wolper and
Lovinfosse 1989]

* Neo [Matthews, Bingham, Sorin 2016] expands this idea for topology-specific verification of safety properties

Parameterized synthesis: based on small model theorems (i.e., cutoff) and SMT-based bounded synthesis
[Jacobs and Bloem 2012]

Well-founded proof spaces: prove safety and liveness of infinite traces by showing that traces terminate
[Farzan et al. 2016]

Population protocols: anonymous processes; invariants are formed of counting constraints; mostly
consider clique topology [Esparza et al. 2018]

Synthesis of Threshold Automata (TA): complete sketches of TA using counter abstraction [Lazi et al.
2018]

- General topology (in some cases a clique) and temporal properties.
- Correctness of a finite abstract model implies correctness of PDP.
- Mostly focus on safety properties and local liveness.
- Few of them focus on self-stabilization.

V&S of Unbounded Protocols

Domain Size of

Variables
\
Number of Processes
Fixed
Fixed-size Protocols Unbounded Variable
Protocols
Unbounded
Constant-space Unbounded Parameterized
Parameterized Protocols Protocols
(FMCAD 2022)

[FMCAD 2022] Ali Ebnenasir, Synthesizing Self-stabilizing Parameterized Protocols with Unbounded Variables, FMCAD 2022.

~ Topology Property Verified/Synthesized Unboundedness

Leader
Election

Token
Passing

Agreement
Coloring

Parity

Agreement

Sum-Not-2
Broadcast
Coloring
MIS
Min/Max
Sum-Not-2
Agreement
Parity

Uni-Ring
Uni-Ring

Uni-Ring
Uni-Ring
Uni-Ring

Uni-Ring

Uni-Ring
Tree
Tree
Tree
Tree

Uni-Ring

Uni-Ring

Uni-Ring

Livelock-freedom

Livelock-freedom

Livelock-freedom
Livelock-freedom

Self-Stabilization

Self-Stabilization

Self-Stabilization
Self-Stabilization
Self-Stabilization
Self-Stabilization
Self-Stabilization
LeadsTo

LeadsTo
LeadsTo

Verified
Verified

Verified
Verified

Synthesized
Synthesized

Synthesized
Synthesized
Synthesized
Synthesized
Synthesized
Synthesized

Synthesized
Synthesized

Processes

Processes

Processes
Processes

Processes/Variable
Domain

Processes/Variable
Domain

Processes
Processes
Processes
Processes
Processes
Processes

Processes
Processes

Open Problems

* V&S for

* Protocols with multiple symmetric families
* Property:
 Fault tolerance (e.g., failsafe, nonmasking, masking)
» Characterize faults in action graphs?
 Calculate fault-span locally?
« Security and privacy (e.g., tamper evidence, access control, anonymity, etc.)
 Local characterization of security breaches?
* Interplay of fault tolerance and security aspects for template processes

« General LTL properties (e.g., LeadsTo, Dwyer's Specification patterns)

Open Problems

» V&S for
* Property:
» General temporal logic properties

* LeadsTo (FMCAD 2019, IEEE TSE 2021)

« Dwyer's Specification patterns?

* Topology:
* Mesh
» Katz graph

Property-Preserving Compositions

* Problem Statement

* Input: Two PDPs P, and P, with
» elementary topologies T, and T,
* invariants I, and |,

« assumption: P, and P, satisfy a global property ¢ respectively from |, and |, for any number of

processes

* Output: PDP P_ with a topology T, and an invariant |, such that
» T, is a (hierarchical/sequential/parallel/superposition) compostion of T, and T, , and
« P, is a (synchronous/asynchronous) composition of P, and P, which satisfies ¢ from |, where
* |, is a conjunctive invariant I, = (I; A I,);
» |.is a disjunctive invariant I, = (I, V L,);

* |.is aimplicative invariant I, = (I, => |,), orl.= (I, => 1,).

Mesh

. » » n » n »
> » > » » » > LRI

e
A

U

Information flow-based sufficient conditions.

HyperRing

Superposed Trees

e o
- i

Top-Down Bottom-Up
Tree Tree

e

—

-
e -

Scalable composition of resilient ring and chain
generating a scalable tube that can grow
in depth and diameter.

Acknowledgement

 Former graduate students:

* Dr. Alex Klinkhamer
* Google (Mountain View, CA)

* Dr. Aly Farahat
* Intuitive Surgical Inc. (Bay Area, CA)

 Dr. Amer Tahat

» Pennsylvania State University

» Dr. Reza Hajisheykhi (co-advised)
* Rubrik Inc.

« Several other M.Sc. students

* NSF grants CCF-1116546 and CCF-0950678
* Michigan Tech's Research Excellence Fund

