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near Temporal Logic (LTL)

LTL applies to infinite traces ¢ = sy5;5,+++ Where s; € X = 2AF
Logical operators = and V, and temporal operator X (next) and U (until):
" [6 E Xp] <= [c'F @] wherec' = s;5,,4...

[oE@pUy] < Fi>0:([c' Ey]) A(VO<j<i, [0/ F @]



near Temporal Logic (LTL)

LTL applies to infinite traces ¢ = sy5;5,+++ Where s; € X = 2AF

Logical operators = and V, and temporal operator X (next) and U (until):
" [6 E Xp] <= [c'F @] wherec' = s;5,,4...

[6F Uyl < 3i>0:([6'Fy) A(VO < j<i, [0/ E ¢])

Enables to build other logical operators (A, =, <, true, false) and other
temporal operators, such as:

o F (finally): Fy = true Uy

e G (globally): Gy = = (F )

e R (release): w R = ~(—ywyU-p)



—xample: Req./Ack.

¢,,=G(rA-a) Vv ((—laUr) A Fa)

req ack

> Or B - >

e G(—a A —r) = there are no req and no ack

e (maUr) A Fa =areq eventually occurs, not ack occur before
that, and an ack must eventually occur.



—Xample:

Req./ACK.

¢,,=G(rA-a) Vv ((—laUr) A Fa)

N
7z

req ack

or 8

e G(—a A —r) = there are no req and no ack

e (maUr) A Fa =areq eventually occurs, not ack occur before
that, and an ack must eventually occur.

@ = (G(—Ial A ) VI(kaUr) A Fa1]>

A (G(_Iaz/\_lrz) V [(_I(,Z2U}"2) N FClz]>



-inite LIL
Finite LTL (FLTL) is essentially LTL on finite traces a = §,5;-*S,

o) = {1 el e £
1 otherwise

T if3ie€{0,....1}: ((a" Fpryl=T)
la krpUy| = AV € {0,....i— 1}, [0/ B @] =

1 otherwise
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3-valued LTL (LTLs3):

T if Voe X . acF @
[al=3¢]= 1 if VoeX? . a0 F o

?  otherwise
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Multivalued Logic(s)

3-valued LTL (LTLs3):

[a F; go] =

4-valued LTL (RV-LTL):

[a Fy (p] =<

If
if
If
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otherwise
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Voe X :ao F ¢
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Decentralized Monitoring
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The Computational Mode

Decentralized Monitors

Shared Memory —

Set of|asynchronous crash-prone|monitors

e Hypothesis 1: Shared memory with read/write accesses
(we actually use IS model)

e Hypothesis 2: Synchronization barrier between
a' = sy s,_pand a = sgs,--+s, = a's,forall t > 1




Monitors Get Partial Information

Partial trace o = 555, where a' = s55;---5,_; is fixed
Monitors examine s, = {d,, ..., a, | for deciding [a F4 qo]

w; = view(p,), I = 1,...,n, after some communication

It may be the case that

:(x’wi Fr qo] = T forsomei € [n]

a'w; Fp ga] = 1| forsomej # i
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That’s what
impacts distributed
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Alternation Nummoer

e The alternation number of an LTL formula ¢ with respect to a finite
partial trace a = a's, denoted by AN(¢, a), is the maximum integer
k > 0 such that there exists a sequence of partial states (i.e., views)
Wg, *++, W, With wy = @, w, = s, and, forevery i € {0,...,k — 1},

(Wi G Wi+1> A ([G/Wi Frol # la'w,, Fp €0]>
e The alternation number of an LTL formula ¢ is
AN(p) = max {AN(go, a)|ae Z*}

e Remark: AN(p) < | AP|




—Xxample
0., = <G(—|a1 A-r) VI(~a Urp) A Fa1]>
A (G(—Iaz ATry) V [(ma,Ur) A Faz])

So = 11, Ay, T, Ao )

* Wy =0 > [Wo Fr @l = T
* W=} 2> W Fropl=1
* Wy =1{r,a} > W Fp @l =T
* W3 = (1,4, 1} > [WsFr @l =1
c wy=A{r,a,n.a =) W Fp@pl=T

AN(g,,) =4



Results

Theorem For every k > 0, there exists an LTL formula ¢ with
AN(@) = k such that runtime verifying ¢ using distributed
monitors requires a verdict set V with | V| > k+ 1.

Theorem For every k > 0, and for every LTL formula ¢ with
AN(¢) = k, there is distributed monitors that correctly
monitor ¢ using verdict set

Borgoyea =1L, T Los Toseess Lywmy s Tiwm
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Let @ = a's be a finite partial trace



Distriputed LI L

Let @ = a's be a finite partial trace

[aFqu] = <

-

T if [aF,@]l=T
1 if [aF,p]=1
Ty if [al=4qo]=Tp/\(VwCs:[a’wFan]:TO)
1, if [al=4g0]=J_p/\(VwCs:[a’wFDga]:J_O)

T,,i>0 if [aFsel=T, A(@wCs:lawFpel=1,)
AN(NVwCs dj<itlawEpele{T,,L}Uu{T,})

Lii>0 if [aFsel=1, A(@wCs:lawFpel=T,,)
AN(NVwCs dj<itlawEpele{T,,L}u{Ll})




Distriputed LI L

Let @ = a's be a finite partial trace

(T if [ak,pl=T
1 if [aF,p]=1
Ty if [al=4qo]=Tp/\(VwCs:[a’wFDgu]:TO)
1, if [al=4g0]=J_p/\(VwCs:[a’wFDga]zJ_O)

@Epol =y 1 is0 i [ak,@l=T, A (GwCs:[awFppl=1,)
AN(NVwCs dj<itlawEpele{T,,L}Uu{T,})

Lii>0 if [aFsel=1, A(@wCs:lawFpel=T,,)
AN(NVwCs dj<itlawEpele{T,,L}u{Ll})

O if [aFpeple{T,1}
{k it [aEpple{Ll,,T,}



Reducing #Logical Values

DLTL*
Lo<Tyg< Ll <T<..<T_; <Ll<T,<l, <..

DLTL™
To<ly<T,<Ll <..<l_ <T.<Ll,<T, <...



Conclusion and
Open Problems

Proof of concept: Decentralized runtime monitoring of ¢
can be done, with verdicts in LTLAn(p)+0(1)

Conjecture: For every @, distributed monitoring of ¢
requires AN(¢g) different values.

Next step: Getting rid of the synchronization barrier
between a’ = 5y5;...5,_;and a = a's, = 5y5;...5,_1S,
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