Distributed Runtime
Monitoring

Pierre Fraigniaud

Institut de Recherche en Informatiue Fondamentale (IRIF)
CNRS and Université Paris Cité

Joint work with:
Borzoo Bonakdarpour, Michigan State University, U.S.A.
Sergio Rajsbaum, UNAM, México
David Rosenblueth, UNAM, México
Corentin Travers, Bordeaux University, France

DISC Satellite Workshop FRIDA 2023, LAquila, October 9, 2023

Runtime Monitoring

time

System

verdict

Sensor I correct p=
Monitor ‘M \ not correct

|

Verdict

Runtime Monitoring Large Remote systems

Runtime Monitoring Large Remote systems

Centralized Monitoring

Large Sys’[em T s

.t
o
.
.

Sensors®

Data D,
fori=1,...,n

Monitor ‘4’"“_““ \

Verdict x }

Runtime Monitoring Large Remote systems

Centralized Monitoring Distributed Monitoring

Large SyStem P ; P 5 Large System

o

o M LEL TN

N .

.)

et L .

] .

" .

v, 5

[4 4

| 0

FE S S e O N BT

' BT STPTTE

H

Sensors & Qensors

Monitor Monitor

Data D,
fori=1,...,n

Monitor ‘4’"“_““ \

j Global Verdict

Local Verdict x;

fori=1,...,n

Central Monitor

Verdict x y = pu(xg, ..., x,)

aggregation
function

Runtime Monitoring Large Remote systems

Centralized Monitoring Distributed Monitoring

Large System LT . “““‘_,_..------..........”% Large System

. g
g
) S, . i)
2 ., CLLLEIT TS . -

-
¥
" %3

LR YT TTTTL L

Sensors® T Sensors

Comm.
medium

Data D,
: Local Verdict x;
fori=1,...,n _ l
fori=1,...,n
Monitor ‘M \ | Central Monitor
l Global Verdict

y = pxg, .., %)

aggregation
function

Verdict x }

near lemporal

OQIC (

near lemporal

OQIC (

T

LTL applies to infinite traces ¢ = sy5;5,+++ Where s; € X = 2AF

near Temporal Logic (LTL)

LTL applies to infinite traces ¢ = sy5;5,+++ Where s; € X = 2AF
Logical operators = and V, and temporal operator X (next) and U (until):
" [6 E Xp] <= [c'F @] wherec' = s;5,,4...

[oE@pUy] < Fi>0:([c' Ey]) A(VO<j<i, [0/ F @]

near Temporal Logic (LTL)

LTL applies to infinite traces ¢ = sy5;5,+++ Where s; € X = 2AF

Logical operators = and V, and temporal operator X (next) and U (until):
" [6 E Xp] <= [c'F @] wherec' = s;5,,4...

[6F Uyl < 3i>0:([6'Fy) A(VO < j<i, [0/ E ¢])

Enables to build other logical operators (A, =, <, true, false) and other
temporal operators, such as:

o F (finally): Fy = true Uy

e G (globally): Gy = = (F)

e R (release): w R = ~(—ywyU-p)

—xample: Req./Ack.

¢,,=G(rA-a) Vv ((—laUr) A Fa)

req ack

> Or B - >

e G(—a A —r) = there are no req and no ack

e (maUr) A Fa =areq eventually occurs, not ack occur before
that, and an ack must eventually occur.

—Xample:

Req./ACK.

¢,,=G(rA-a) Vv ((—laUr) A Fa)

N
7z

req ack

or 8

e G(—a A —r) = there are no req and no ack

e (maUr) A Fa =areq eventually occurs, not ack occur before
that, and an ack must eventually occur.

@ = (G(—Ial A) VI(kaUr) A Fa1]>

A (G(_Iaz/_lrz) V [(_I(,Z2U}"2) N FClz]>

-inite LIL
Finite LTL (FLTL) is essentially LTL on finite traces a = §,5;-*S,

o) = {1 el e £
1 otherwise

T if3ie€{0,....1}: ((a" Fpryl=T)
la krpUy| = AV € {0,....i— 1}, [0/ B @] =

1 otherwise

Multivalued Logic(s)

Multivalued Logic(s)

3-valued LTL (LTLs3):

T if Voe X . acF @
[al=3¢]= 1 if VoeX? . a0 F o

? otherwise

Multivalued Logic(s)

3-valued LTL (LTLs3):

[a F; go] =

4-valued LTL (RV-LTL):

@ Fso] =9 T

If
if
If
If

QR] [8

If
If

otherwise

Voe X . acF @
VoeX¥:ao F o

=5 CO: —3
:3 CD:
:3 QO:

=3 w_

1

Multivalued Logic(s)

3-valued LTL (LTLs3):

[a F; go] =

4-valued LTL (RV-LTL):

[a Fy (p] =<

If
if
If
If

QR] [8

If
If

otherwise

Voe X . acF @
Voe X :ao F ¢

Runtime Verification LTL

/ (RV-LTL)

:3¢:=T

:3 CO: — |
:3€0:

=3 ¢_‘

Decentralized Monitoring

Monitoring ¢
Timet:

a = $pS1°*S,

» .

T .
PO L LT PPIPPTTS i

.

Sensors @

data, i.e.,
elements of

Z=2AP

Monitor ‘4’"“_““ \

Verdict x(7)

x(1) = a Fy @]

.......

(3 L

. .

Sensors

Comm.
Monitor medium

nitor

Monitor

»(2)

x,(2) Individual Verdicts

e | Central Monitor

Global Verdict
y(#) = pu(xy (1), ..., x,(2))

aggregation

y(t) — [a I:4 CD] function

The Computational Mode

Decentralized Monitors

Shared Memory —

Set of|asynchronous crash-prone|monitors

e Hypothesis 1: Shared memory with read/write accesses
(we actually use IS model)

e Hypothesis 2: Synchronization barrier between
a' = sy s,_pand a = sgs,--+s, = a's,forall t > 1

Monitors Get Partial Information

Partial trace o = 555, where a' = s55;---5,_; is fixed
Monitors examine s, = {d,, ..., a, | for deciding [a F4 qo]

w; = view(p,), I = 1,...,n, after some communication

It may be the case that

:(x’wi Fr qo] = T forsomei € [n]

a'w; Fp ga] = 1| forsomej # i

—valuation of @

—\/Olves

ACross both Time and Space

partial trace o

S0

S1

FLTL

Y

time t

—valuation of @

—\/Olves

ACross both Time and Space

partial trace o

SO Sl Sl._l Sl-
St
We

prefix a’ is fixed :
SO Sl Sl‘—l WO

FLTL

Y

time t

FLTL

LS|oace n

That’s what
impacts distributed
monitoring!

Alternation Nummoer

e The alternation number of an LTL formula ¢ with respect to a finite
partial trace a = a's, denoted by AN(¢, a), is the maximum integer
k > 0 such that there exists a sequence of partial states (i.e., views)
Wg, *++, W, With wy = @, w, = s, and, forevery i € {0,...,k — 1},

(Wi G Wi+1> A ([G/Wi Frol # la'w,, Fp €0]>
e The alternation number of an LTL formula ¢ is
AN(p) = max {AN(go, a)|ae Z*}

e Remark: AN(p) < | AP|

—Xxample
0., = <G(—|a1 A-r) VI(~a Urp) A Fa1]>
A (G(—Iaz ATry) V [(ma,Ur) A Faz])

So = 11, Ay, T, Ao)

* Wy =0 > [Wo Fr @l = T
* W=} 2> W Fropl=1
* Wy =1{r,a} > W Fp @l =T
* W3 = (1,4, 1} > [WsFr @l =1
c wy=A{r,a,n.a =) W Fp@pl=T

AN(g,,) =4

Results

Theorem For every k > 0, there exists an LTL formula ¢ with
AN(@) = k such that runtime verifying ¢ using distributed
monitors requires a verdict set V with | V| > k+ 1.

Theorem For every k > 0, and for every LTL formula ¢ with
AN(¢) = k, there is distributed monitors that correctly
monitor ¢ using verdict set

Borgoyea =1L, T Los Toseess Lywmy s Tiwm

Distriputed LI L

Distriputed LI L

Let @ = a's be a finite partial trace

Distriputed LI L

Let @ = a's be a finite partial trace

[aFqu] = <

-

T if [aF,@]l=T
1 if [aF,p]=1
Ty if [al=4qo]=Tp/\(VwCs:[a’wFan]:TO)
1, if [al=4g0]=J_p/\(VwCs:[a’wFDga]:J_O)

T,,i>0 if [aFsel=T, A(@wCs:lawFpel=1,)
AN(NVwCs dj<itlawEpele{T,,L}Uu{T,})

Lii>0 if [aFsel=1, A(@wCs:lawFpel=T,,)
AN(NVwCs dj<itlawEpele{T,,L}u{Ll})

Distriputed LI L

Let @ = a's be a finite partial trace

(T if [ak,pl=T
1 if [aF,p]=1
Ty if [al=4qo]=Tp/\(VwCs:[a’wFDgu]:TO)
1, if [al=4g0]=J_p/\(VwCs:[a’wFDga]zJ_O)

@Epol =y 1 is0 i [ak,@l=T, A (GwCs:[awFppl=1,)
AN(NVwCs dj<itlawEpele{T,,L}Uu{T,})

Lii>0 if [aFsel=1, A(@wCs:lawFpel=T,,)
AN(NVwCs dj<itlawEpele{T,,L}u{Ll})

O if [aFpeple{T,1}
{k it [aEpple{Ll,,T,}

Reducing #Logical Values

DLTL*
Lo<Tyg< Ll <T<..<T_; <Ll<T,<l, <..

DLTL™
To<ly<T,<Ll <..<l_ <T.<Ll,<T, <...

Conclusion and
Open Problems

Proof of concept: Decentralized runtime monitoring of ¢
can be done, with verdicts in LTLAn(p)+0(1)

Conjecture: For every @, distributed monitoring of ¢
requires AN(¢g) different values.

Next step: Getting rid of the synchronization barrier
between a’ = 5y5;...5,_;and a = a's, = 5y5;...5,_1S,

Conclusion and
Open Problems

Proof of concept: Decentralized runtime monitoring of ¢
can be done, with verdicts in LTLAn(p)+0(1)

Conjecture: For every @, distributed monitoring of ¢
requires AN(¢g) different values.

Next step: Getting rid of the synchronization barrier
between a’ = 5y5;...5,_;and a = a's, = 5y5;...5,_1S,

G te

