Distributed Runtime Monitoring

Pierre Fraigniaud

Institut de Recherche en Informatique Fondamentale (IRIF) CNRS and Université Paris Cité

Joint work with:

- Borzoo Bonakdarpour, Michigan State University, U.S.A.
- Sergio Rajsbaum, UNAM, México
- David Rosenblueth, UNAM, México
- Corentin Travers, Bordeaux University, France

Runtime Monitoring

Centralized Monitoring

LTL applies to infinite traces $\sigma = s_0 s_1 s_2 \cdots$ where $s_i \in \Sigma = 2^{AP}$

LTL applies to infinite traces $\sigma = s_0 s_1 s_2 \cdots$ where $s_i \in \Sigma = 2^{AP}$

Logical operators \neg and \lor , and temporal operator X (*next*) and U (*until*):

LTL applies to infinite traces $\sigma = s_0 s_1 s_2 \cdots$ where $s_i \in \Sigma = 2^{AP}$

Logical operators ¬ and ∨, and temporal operator X (*next*) and U (*until*):

Enables to build other logical operators (\land , \rightarrow , \leftrightarrow , true, false) and other temporal operators, such as:

- F (finally): $F \psi \equiv \text{true } U \psi$
- G (globally): $G \psi \equiv \neg (F \neg \psi)$
- R (release): ψ R $\varphi \equiv \neg(\neg \psi \cup \neg \varphi)$

Example: Req./Ack.

$$\varphi_{ra} = \mathsf{G}(\neg r \land \neg a) \lor \left((\neg a \, \mathsf{U} \, r) \land \mathsf{F} a\right)$$

$$\xrightarrow{\mathsf{req}} \quad \overset{\mathsf{ack}}{\longrightarrow} \quad \mathsf{or} \quad \xrightarrow{\mathsf{req}} \quad \overset{\mathsf{ack}}{\longrightarrow} \quad \mathsf{gen}$$

- $G(\neg a \land \neg r)$ = there are no req and no ack
- $(\neg a \cup r) \land Fa = a$ req eventually occurs, not ack occur before that, and an ack must eventually occur.

Example: Req./Ack.

$$\varphi_{ra} = \mathsf{G}(\neg r \land \neg a) \lor \left((\neg a \, \mathsf{U} \, r) \land \mathsf{F} a\right)$$

$$\xrightarrow{\mathsf{req}} \quad \overset{\mathsf{ack}}{\longrightarrow} \quad \mathsf{or} \quad \xrightarrow{\mathsf{req}} \quad \overset{\mathsf{ack}}{\longrightarrow} \quad \mathsf{gen}$$

- $G(\neg a \land \neg r)$ = there are no req and no ack
- $(\neg a \cup r) \land Fa = a$ req eventually occurs, not ack occur before that, and an ack must eventually occur.

$$\varphi_{ra2} = \left(\mathsf{G}(\neg a_1 \land \neg r_1) \lor [(\neg a_1 \, \mathsf{U} \, r_1) \land \mathsf{F} a_1] \right)$$

$$\land \left(\mathsf{G}(\neg a_2 \land \neg r_2) \lor [(\neg a_2 \, \mathsf{U} \, r_2) \land \mathsf{F} a_2] \right)$$

Finite LTL

Finite LTL (FLTL) is essentially LTL on finite traces $\alpha = s_0 s_1 \cdots s_t$

$$\begin{bmatrix} \alpha \models_F \mathsf{N}\, \varphi \end{bmatrix} = \left\{ \begin{array}{ll} \begin{bmatrix} \alpha^1 \models_F \varphi \end{bmatrix} & \text{if } \alpha^1 \neq \varepsilon \\ \bot & \text{otherwise} \end{array} \right.$$

$$\left[\alpha \models_F \varphi \cup \psi \right] = \left\{ \begin{array}{l} \top \quad \text{if } \exists i \in \{0, \ldots, t\} : \left(([\alpha^i \models_F \psi] = \top \) \right. \\ \\ \wedge \left. (\forall j \in \{0, \ldots, i-1\}, [\alpha^j \models_F \varphi] = \top \) \right) \\ \bot \quad \text{otherwise} \end{array} \right.$$

3-valued LTL (LTL₃):

$$\left[\alpha \models_{3} \varphi\right] = \begin{cases} \top & \text{if} & \forall \sigma \in \Sigma^{\omega} : \alpha\sigma \models \varphi \\ \bot & \text{if} & \forall \sigma \in \Sigma^{\omega} : \alpha\sigma \not\models \varphi \\ ? & \text{otherwise} \end{cases}$$

3-valued LTL (LTL₃):

$$\left[\alpha \models_{3} \varphi\right] = \begin{cases} \top & \text{if} & \forall \sigma \in \Sigma^{\omega} : \alpha\sigma \models \varphi \\ \bot & \text{if} & \forall \sigma \in \Sigma^{\omega} : \alpha\sigma \not\models \varphi \\ ? & \text{otherwise} \end{cases}$$

4-valued LTL (RV-LTL):

$$\left[\alpha \models_{4} \varphi\right] = \begin{cases} \top & \text{if} & \left[\alpha \models_{3} \varphi\right] = \top \\ \bot & \text{if} & \left[\alpha \models_{3} \varphi\right] = \bot \\ \top_{p} & \text{if} & \left[\alpha \models_{3} \varphi\right] = ? \land \left[\alpha \models_{F} \varphi\right] = \top \\ \bot_{p} & \text{if} & \left[\alpha \models_{3} \varphi\right] = ? \land \left[\alpha \models_{F} \varphi\right] = \bot \end{cases}$$

3-valued LTL (LTL₃):

$$\left[\alpha \models_{3} \varphi\right] = \begin{cases} \top & \text{if} & \forall \sigma \in \Sigma^{\omega} : \alpha\sigma \models \varphi \\ \bot & \text{if} & \forall \sigma \in \Sigma^{\omega} : \alpha\sigma \not\models \varphi \\ ? & \text{otherwise} \end{cases}$$

Runtime Verification LTL

4-valued LTL (RV-LTL):

$$\left[\alpha \models_{4} \varphi\right] = \begin{cases} \top & \text{if} & \left[\alpha \models_{3} \varphi\right] = \top \\ \bot & \text{if} & \left[\alpha \models_{3} \varphi\right] = \bot \\ \top_{p} & \text{if} & \left[\alpha \models_{3} \varphi\right] = ? \land \left[\alpha \models_{F} \varphi\right] = \top \\ \bot_{p} & \text{if} & \left[\alpha \models_{3} \varphi\right] = ? \land \left[\alpha \models_{F} \varphi\right] = \bot \end{cases}$$

Decentralized Monitoring

Monitoring φ Time $t: \alpha = s_0 s_1 \cdots s_t$

The Computational Model

Decentralized Monitors

Set of asynchronous crash-prone monitors

- Hypothesis 1: Shared memory with read/write accesses (we actually use IIS model)
- Hypothesis 2: Synchronization barrier between $\alpha' = s_0 s_1 \cdots s_{t-1}$ and $\alpha = s_0 s_1 \cdots s_t = \alpha' s_t$ for all $t \ge 1$

Monitors Get Partial Information

- Partial trace $\alpha = s_0 s_1 \cdots s_t$ where $\alpha' = s_0 s_1 \cdots s_{t-1}$ is fixed
- Monitors examine $s_t = \{a_1, ..., a_k\}$ for deciding $\alpha \models_4 \phi$
- $w_i = \text{view}(p_i), i = 1,...,n$, after some communication
- It may be the case that
 - $\left[\alpha' w_i \models_F \varphi\right] = \mathsf{T}$ for some $i \in [n]$

Evaluation of $\pmb{\varphi}$ Evolves Across both Time and Space

partial trace α s_0 s_1 \ldots s_{t-1} s_t

Evaluation of ϕ Evolves Across both Time and Space

impacts distributed

monitoring!

Alternation Number

• The *alternation number* of an LTL formula φ with respect to a finite partial trace $\alpha = \alpha' s$, denoted by $AN(\varphi, \alpha)$, is the maximum integer $k \geq 0$ such that there exists a sequence of partial states (i.e., views) w_0, \dots, w_k with $w_0 = \emptyset$, $w_k = s$, and, for every $i \in \{0, \dots, k-1\}$,

$$\left(w_{i} \subsetneq w_{i+1}\right) \wedge \left(\left[\alpha' w_{i} \models_{F} \varphi\right] \neq \left[\alpha' w_{i+1} \models_{F} \varphi\right]\right)$$

• The alternation number of an LTL formula ϕ is

$$AN(\varphi) = \max \{AN(\varphi, \alpha) \mid \alpha \in \Sigma^{\star}\}$$

• Remark: $AN(\varphi) \leq |AP|$

Example

$$\varphi_{ra2} = \left(\mathsf{G}(\neg a_1 \land \neg r_1) \lor [(\neg a_1 \, \mathsf{U} \, r_1) \land \mathsf{F} a_1] \right)$$

$$\wedge \left(\mathsf{G}(\neg a_2 \wedge \neg r_2) \vee [(\neg a_2 \mathsf{U} r_2) \wedge \mathsf{F} a_2] \right)$$

$$s_0 = \{r_1, a_1, r_2, a_2\}$$

•
$$w_0 = \emptyset$$

•
$$w_1 = \{r_1\}$$

•
$$w_2 = \{r_1, a_1\}$$

•
$$w_3 = \{r_1, a_1, r_2\}$$

$$\Rightarrow [w_0 \models_F \varphi_{ra2}] = \mathsf{T}$$

$$\rightarrow [w_1 \models_F \varphi_{ra2}] = \bot$$

$$\rightarrow [w_2 \models_F \varphi_{ra2}] = \top$$

$$\rightarrow [w_3 \models_F \varphi_{ra2}] = \bot$$

•
$$w_4 = \{r_1, a_1, r_2, a_2\} = s_0 \rightarrow [w_4 \models_F \varphi_{ra2}] = \mathsf{T}$$

$$AN(\varphi_{ra2}) = 4$$

Results

Theorem For every $k \geq 0$, there exists an LTL formula φ with $AN(\varphi) = k$ such that runtime verifying φ using distributed monitors requires a verdict set V with $|V| \geq k + 1$.

Theorem For every $k \geq 0$, and for every LTL formula φ with $AN(\varphi) = k$, there is distributed monitors that correctly monitor φ using verdict set

$$\mathbb{B}_{2\lceil k/2\rceil+4} = \{ \perp, \top, \perp_0, \top_0, \ldots, \perp_{\lceil k/2\rceil}, \top_{\lceil k/2\rceil} \}$$

Let $\alpha = \alpha' s$ be a finite partial trace

Let $\alpha = \alpha' s$ be a finite partial trace

$$\left[\alpha \models_{D} \varphi\right] = \begin{cases} \top & \text{if} \quad \left[\alpha \models_{4} \varphi\right] = \top \\ \bot & \text{if} \quad \left[\alpha \models_{4} \varphi\right] = \bot \\ \top_{0} & \text{if} \quad \left[\alpha \models_{4} \varphi\right] = \top_{p} \ \land \left(\forall w \subset s : \left[\alpha'w \models_{D} \varphi\right] = \top_{0}\right) \\ \bot_{0} & \text{if} \quad \left[\alpha \models_{4} \varphi\right] = \bot_{p} \ \land \left(\forall w \subset s : \left[\alpha'w \models_{D} \varphi\right] = \bot_{0}\right) \\ \top_{i}, i > 0 & \text{if} \quad \left[\alpha \models_{4} \varphi\right] = \top_{p} \ \land \left(\exists w \subset s : \left[\alpha'w \models_{D} \varphi\right] = \bot_{i-1}\right) \\ & \qquad \land \left(\forall w \subset s, \exists j < i : \left[\alpha'w \models_{D} \varphi\right] \in \left\{\ \top_{j}, \bot_{j}\right\} \cup \left\{\ \top_{i}\right\}\right) \\ \bot_{i} i > 0 & \text{if} \quad \left[\alpha \models_{4} \varphi\right] = \bot_{p} \ \land \left(\exists w \subset s : \left[\alpha'w \models_{D} \varphi\right] = \top_{i-1}\right) \\ & \qquad \land \left(\forall w \subset s, \exists j < i : \left[\alpha'w \models_{D} \varphi\right] \in \left\{\ \top_{j}, \bot_{j}\right\} \cup \left\{\ \bot_{i}\right\}\right) \end{cases}$$

Let $\alpha = \alpha' s$ be a finite partial trace

$$\left[\alpha \models_{D} \varphi\right] = \begin{cases} \top & \text{if} \quad [\alpha \models_{4} \varphi] = \top \\ \bot & \text{if} \quad [\alpha \models_{4} \varphi] = \bot \\ \top_{0} & \text{if} \quad [\alpha \models_{4} \varphi] = \top_{p} \ \land \ (\forall w \in s : [\alpha'w \models_{D} \varphi] = \top_{0}) \\ \bot_{0} & \text{if} \quad [\alpha \models_{4} \varphi] = \bot_{p} \ \land \ (\forall w \in s : [\alpha'w \models_{D} \varphi] = \bot_{0}) \\ \top_{i}, i > 0 & \text{if} \quad [\alpha \models_{4} \varphi] = \top_{p} \ \land \ (\exists w \in s : [\alpha'w \models_{D} \varphi] = \bot_{i-1}) \\ & \land \ (\forall w \in s, \exists j < i : [\alpha'w \models_{D} \varphi] \in \{\ \top_{j}, \bot_{j}\} \cup \{\ \top_{i}\}) \\ \bot_{i} i > 0 & \text{if} \quad [\alpha \models_{4} \varphi] = \bot_{p} \ \land \ (\exists w \in s : [\alpha'w \models_{D} \varphi] = \top_{i-1}) \\ & \land \ (\forall w \in s, \exists j < i : [\alpha'w \models_{D} \varphi] \in \{\ \top_{j}, \bot_{j}\} \cup \{\ \bot_{i}\}) \end{cases}$$

$$AN(\varphi, \alpha) = \begin{cases} 0 & \text{if} \quad [\alpha \models_{D} \varphi] \in \{\ \top, \bot\} \\ k & \text{if} \quad [\alpha \models_{D} \varphi] \in \{\ \bot_{k}, \top_{k}\} \end{cases}$$

Reducing #Logical Values

$$\begin{array}{c} \mathsf{DLTL}^{+} \\ \bot_{0} < \top_{0} < \bot_{1} < \top_{1} < \ldots < \top_{i-1} < \bot_{i} < \top_{i} < \bot_{i+1} < \ldots \\ \\ \mathsf{DLTL}^{-} \\ \top_{0} < \bot_{0} < \top_{1} < \bot_{1} < \ldots < \bot_{i-1} < \top_{i} < \bot_{i} < \top_{i+1} < \ldots \\ \end{array}$$

Conclusion and Open Problems

- **Proof of concept:** Decentralized runtime monitoring of φ can be done, with verdicts in $LTL_{AN(\varphi)+O(1)}$
- Conjecture: For every φ , distributed monitoring of φ requires $AN(\varphi)$ different values.
- Next step: Getting rid of the synchronization barrier between $\alpha' = s_0 s_1 \dots s_{t-1}$ and $\alpha = \alpha' s_t = s_0 s_1 \dots s_{t-1} s_t$

Conclusion and Open Problems

- **Proof of concept:** Decentralized runtime monitoring of φ can be done, with verdicts in $LTL_{AN(\varphi)+O(1)}$
- Conjecture: For every φ , distributed monitoring of φ requires $AN(\varphi)$ different values.
- Next step: Getting rid of the synchronization barrier between $\alpha' = s_0 s_1 \dots s_{t-1}$ and $\alpha = \alpha' s_t = s_0 s_1 \dots s_{t-1} s_t$

