
Synchronizer: a recipe for building correct
algorithms under partial synchrony

Joint work with Manuel Bravo (Informal Systems),
Gregory Chockler (University of Surrey), and

Alejandro Naser Pastoriza (IMDEA)

Alexey Gotsman
IMDEA Software Institute, Madrid, Spain

• Many distributed computing problems are unsolvable
under asynchrony and failures

• Consensus and state-machine replication [FLP85]

• Compromise: provide safety always and liveness only
under synchrony

Fault-tolerant distributed computing

asynchronous period
1

2

3

Partial synchrony [DLS88]

• Messages delayed or lost

asynchronous period
1

2

3

Partial synchrony [DLS88]

• Messages delayed or lost

• Process clocks out of sync

asynchronous period
1

2

3

Partial synchrony [DLS88]

• Messages delayed or lost

• Process clocks out of sync

asynchronous period synchronous period
1

2

3

GST

Partial synchrony [DLS88]

• Messages delayed or lost

• Process clocks out of sync

asynchronous period synchronous period

• Messages through correct channels
delivered within an unknown time δ

δ
1

2

3

GST

Partial synchrony [DLS88]

• Messages delayed or lost

• Process clocks out of sync

asynchronous period synchronous period

• Messages through correct channels
delivered within an unknown time δ

• Process clocks track real time

δ
1

2

3

GST

Partial synchrony [DLS88]

• Messages delayed or lost

• Process clocks out of sync

asynchronous period synchronous period

• Messages through correct channels
delivered within an unknown time δ

• Process clocks track real time

δ
1

2

3

GST

Partial synchrony [DLS88]

Byzantine or crash failures

[SOSP'07, Best Paper Award]

It ain't simple

[SOSP'07, Best Paper Award]

It ain't simple

[SOSP'07, Best Paper Award]

Formal Verification of Blockchain Byzantine Fault Tolerance
Tholoniat & Gramoli, FRIDA’19

It ain't simple

• Byzantine Consensus protocol
via a modular decomposition

• Found a liveness bug

• Fixable, but the intermediate
abstractions will remain broken:
too strong to be implementable

It ain't simple

Leader-driven consensus
v

• The leader proposes a value to vote on

• The processes can vote to accept the value

• Consensus is reached when enough processes vote to accept
the value

1

2

3

✔

Failed votes

2

3

?

?

• Votes may fail: faulty leader or asynchronous network

• May need to change leaders

Views

1

2

3
1 2 3 4 5

• Divide the execution into views (aka rounds), each with a fixed
leader: view mod n

Views

1

2

3
1 2 3 4 5

• Divide the execution into views (aka rounds), each with a fixed
leader: view mod n

Views

1

2

3

GST
1 2 3 4 5

• Divide the execution into views (aka rounds), each with a fixed
leader: view mod n

• Will hit a good leader after GST ⟹ will decide

1

2

3

GST

1 2 3 4

20

1 2

View synchronization

• Before GST: clocks out of sync, messages delayed or lost

View synchronization

1

2

3

GST

1 2 3 4

20

1 2

v

v

v

...

...

...

• Before GST: clocks out of sync, messages delayed or lost

• After GST: need to bring all non-faulty processes into the same view

View synchronization

1

2

3

GST

1 2 3 4

20

1 2

v

v

v

...

...

...

• Before GST: clocks out of sync, messages delayed or lost

• After GST: need to bring all non-faulty processes into the same view

• Integrating the liveness mechanisms complicates the protocol

Synchronizer

Consensus

Synchronizer

• Synchronizer tells the processes when to switch views
[DLS88], [HotStuff, PODC'19], [Naor&Keidar, DISC'20]...

• Reused across different protocols ⟹ more systematic design,
modular proofs

• White-box optimizations can be done for each protocol

Our contributions

• Precise specification of the synchronizer abstraction

• Synchronizer implementations under partial synchrony

• Case studies of implementing live consensus and
state-machine replication

Our contributions

• Precise specification of the synchronizer abstraction

• Synchronizer implementations under partial synchrony

• Case studies of implementing live consensus and
state-machine replication

• Different failure models:

‣ Byzantine faults [DISC'20, DISC'22]

‣ Crash faults and classical partial synchrony model

‣ Crash faults and intermitted connectivity [arxiv]

Crashes ain't simple either
[OSDI'18]

14

Crashes ain't simple either
[OSDI'18]

14

CAP theorem

• strong Consistency

• Availability

• Partition-tolerance

Can't get all of:
1 2

3

CAP theorem

• strong Consistency

• Availability

• Partition-tolerance

Can't get all of:

Doesn't preclude availability in parts of the system:
can run Paxos at the majority side of a partition

1 2

3

Types of network failures

1 2

3

indirect connectivity 
/ partial partitions

Types of network failures

1 2

3

indirect connectivity 
/ partial partitions

1 2

3

asymmetric connectivity

Types of network failures

1 2

3

intermittent connectivity

1 2

3

indirect connectivity 
/ partial partitions

1 2

3

asymmetric connectivity

Types of network failures

1 2

3

intermittent connectivity

1 2

3

indirect connectivity 
/ partial partitions

1 2

3

asymmetric connectivity

Often consequence of Byzantine router failures

• Can drop an arbitrary subset of
messages sent through them 1 2

3

Flaky channels

• Can drop an arbitrary subset of
messages sent through them

• Capture indirect, asymmetric
and intermittent connectivity,
selective omission...

1 2

3

Flaky channels

• Can drop an arbitrary subset of
messages sent through them

• Capture indirect, asymmetric
and intermittent connectivity,
selective omission...

• Flaky channels strictly weaker
than fair-lossy ones

1 2

3

Flaky channels

Failure detectors don’t work

• Can't implement consensus by
first implementing Ω 1 2

3

Failure detectors don’t work

• Can't implement consensus by
first implementing Ω

• Flaky channels can deliver Ω
messages

PING ✔

PI
NG
 ✔

1 2

3

Failure detectors don’t work

• Can't implement consensus by
first implementing Ω

• Flaky channels can deliver Ω
messages

• But drop all other messages

PING ✔

PI
NG
 ✔

Paxos2A ✘

Pa
xo
s2
A
✘

1 2

3

Failure detectors don’t work

• Can't implement consensus by
first implementing Ω

• Flaky channels can deliver Ω
messages

• But drop all other messages

• So Ω elects a leader with bad
connectivity

PING ✔

PI
NG
 ✔

Paxos2A ✘

Pa
xo
s2
A
✘

1 2

3

System model

asynchronous period synchronous period

δ
1

2

3

GST

Partial synchrony where:

• Processes can fail by crashing

• Channels between correct processes are either eventually
timely or flaky

Our results

• Upper bound:

‣ Can implement consensus if
at most a minority of processes crash, and
a majority of correct processes are strongly
connected by correct channels: connected core

core = {1,2,4}

2

3

1

4

5

Our results

• Upper bound:

‣ Can implement consensus if
at most a minority of processes crash, and
a majority of correct processes are strongly
connected by correct channels: connected core

‣ Get availability only within the connected core

core = {1,2,4}

2

3

1

4

5

Our results

• Upper bound:

‣ Can implement consensus if
at most a minority of processes crash, and
a majority of correct processes are strongly
connected by correct channels: connected core

‣ Get availability only within the connected core

‣ Constructed using a synchronizer

core = {1,2,4}

2

3

1

4

5

Our results

• Upper bound:

‣ Can implement consensus if
at most a minority of processes crash, and
a majority of correct processes are strongly
connected by correct channels: connected core

‣ Get availability only within the connected core

‣ Constructed using a synchronizer

• Lower bound: our connectivity assumption is optimal

core = {1,2,4}

2

3

1

4

5

Upper bound

Synchronizer API [Naor&Keidar, 2020]

Consensus

Synchronizer

Synchronizer API [Naor&Keidar, 2020]

Consensus

Synchronizer
new_view(v)

• Synchronizer tells the processes to enter a view v via new_view(v)

Synchronizer API [Naor&Keidar, 2020]

Consensus

Synchronizer
new_view(v)

• Synchronizer tells the processes to enter a view v via new_view(v)

• Rules for when to switch views are protocol-specific

Synchronizer API [Naor&Keidar, 2020]

Consensus

Synchronizer
new_view(v) advance

• Synchronizer tells the processes to enter a view v via new_view(v)

• Rules for when to switch views are protocol-specific

• A process requests a switch via advance

Synchronizer specification

Consensus

Synchronizer
new_view(v) advance

• A balance between implementability and usability:

‣ Implementable in our model

‣ Can be used to implement consensus

Validity

• A process can enter v + 1 only if some process from the core has
invoked advance in v

2

3

1

4

5

Validity

• A process can enter v + 1 only if some process from the core has
invoked advance in v

• Ensures the system won't leave a view that all processes from the core
are happy with

2

3

1

4

5

Progress (simplified)

advance

advance

v+1advance

• Some process from the core will enter v + 1 if >n/2 processes from the
core invoke advance in v

2

3

1

4

5

Progress (simplified)

advance

advance

v+1advance

• Some process from the core will enter v + 1 if >n/2 processes from the
core invoke advance in v

• Allows iterating over views in search of a correct well-connected leader

2

3

1

4

5

Progress (simplified)

advance

advance

v+1advance

• Some process from the core will enter v + 1 if >n/2 processes from the
core invoke advance in v

• Allows iterating over views in search of a correct well-connected leader

• >n/2 advance calls instead of 1: needed for implementability

2

3

1

4

5

Bounded entry

𝒱
≤ d

• If a process from the core enters v, then all processes from the core will
enter v within d (e.g., δ * diameter(core))

2

3

1

4

5

Bounded entry

𝒱
≤ d

• If a process from the core enters v, then all processes from the core will
enter v within d (e.g., δ * diameter(core)),

provided v ≥ 𝒱

Before GST may not be able to exchange
messages needed to synchronise processes

2

3

1

4

5

Bounded entry

𝒱
≤ d

• If a process from the core enters v, then all processes from the core will
enter v within d (e.g., δ * diameter(core)),

provided v ≥ 𝒱 and no process from the core attempts to advance to a
higher view within d

If a process calls advance from v, then some
processes may skip v and enter v+1 directly

2

3

1

4

5

Bounded entry

𝒱
≤ d

• If a process from the core enters v, then all processes from the core will
enter v within d (e.g., δ * diameter(core)),

provided v ≥ 𝒱 and no process from the core attempts to advance to a
higher view within d

• Allows promptly bringing the core into the same view

2

3

1

4

5

• Progress: allows iterating over views in search for a leader from
the core

• Bounded entry: ensures all process from the core enter the
same view

• Validity: ensures processes from the core stay in a good view

Synchronizer specification

Implementation

1

2

3

GST

1 2 3 4

20

1 2

• Don’t just enter a new view once somebody calls advance:
processes need to communicate first

Implementation

• When a process calls advance in a view v,
it broadcasts WISH(v + 1), saying it wants to enter v + 1

Implementation

• When a process calls advance in a view v,
it broadcasts WISH(v + 1), saying it wants to enter v + 1

• A process enters view v + 1 when a majority of processes
express a similar wish: e.g. WISH(v + 1)

Implementation

• When a process calls advance in a view v,
it broadcasts WISH(v + 1), saying it wants to enter v + 1

• A process enters view v + 1 when a majority of processes
express a similar wish: e.g. WISH(v + 1)

• Requiring majority guards against disruptions by badly
connected processes

Implementation

• Maintain an array with the highest WISH received from each process:
run in bounded space

4

2 1 1 5 3

1 2 3 5

Implementation

• Maintain an array with the highest WISH received from each process:
run in bounded space

• When received n/2 + 1 WISHes for views > yours, enter the minimal
view in them

4

2 1 1 5 3

1 2 3 5

1 1 2 53

Implementation

• Maintain an array with the highest WISH received from each process:
run in bounded space

• When received n/2 + 1 WISHes for views > yours, enter the minimal
view in them

4

2 1 1 5 3

1 2 3 5

1 1 2 53

Implementation

• Maintain an array with the highest WISH received from each process:
run in bounded space

• When received n/2 + 1 WISHes for views > yours, enter the minimal
view in them

4

2 1 1 5 3

1 2 3 5

2

1 1 2 53

Implementation

• Maintain an array with the highest WISH received from each process:
run in bounded space

• When received n/2 + 1 WISHes for views > yours, enter the minimal
view in them

• Switch regardless of whether you called advance: allows lagging
processes to catch up

4

2 1 1 5 3

1 2 3 5

2

1 1 2 53

Implementation

• Maintain an array with the highest WISH received from each process:
run in bounded space

• When received n/2 + 1 WISHes for views > yours, enter the minimal
view in them

• Switch regardless of whether you called advance: allows lagging
processes to catch up

• Messages can get lost before GST and we have to cope with indirect
connectivity: periodically resend the array with WISHes

4

2 1 1 5 3

1 2 3 5

2

Synchronizer correctness

• Proved correctness wrt our specification

• View synchronization mechanics hidden under the spec

Consensus liveness

• Liveness property: any propose() invocation by a process in
the connected core eventually returns

‣ Can't guarantee liveness outside the connected core

Consensus liveness

• Liveness property: any propose() invocation by a process in
the connected core eventually returns

‣ Can't guarantee liveness outside the connected core

• Implementation:

‣ Single-decree Paxos on top of the view synchronizer

‣ Leaders rotate round-robin: leader = view mod n

‣ Processes monitor the leader behaviour and call advance
if they suspect it’s faulty or has a bad connectivity

Consensus
1

2

3

co
re

Consensus

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

1

2

3

enter_view(1)

enter_view(1) 1

co
re

Consensus

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

1

2

3

enter_view(1)

enter_view(1) 1

1B 1B

co
re

Consensus
1

2

3
1

enter_view(1)

enter_view(1)

advance

advance

1B 1B

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

co
re

• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

Consensus
1

2

3
1

enter_view(1)

enter_view(1)

advance

advance

• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

1B 1B

2

• By Progress, some process from {2,3} enters view 2

enter_view(2)

1B

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

co
re

Consensus
1

2

3
1

enter_view(1)

enter_view(1)

advance

advance

• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

1B 1B

2

• By Progress, some process from {2,3} enters view 2

enter_view(2)

1B

Some process from the core will enter v + 1 if more
than n/2 processes from the core invoke advance in v

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

co
re

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

Consensus
1

2

3
1

enter_view(1)

enter_view(1)

advance

advance

1B 1B

2
enter_view(2)

• By Bounded entry, process 2 will promptly enter view 2 within d = δ * diameter(core)

• By Progress, some process from {2,3} enters view 2
1B enter_view(2)

1B

≤ d

co
re

• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

Consensus
1

2

3
1

enter_view(1)

enter_view(1)

advance

advance

1B 1B

2
enter_view(2)

• By Bounded entry, process 2 will promptly enter view 2 within d = δ * diameter(core)

• By Progress, some process from {2,3} enters view 2
1B enter_view(2)

1B

≤ d

If a process from the core enters v, then all processes from
the core will enter v within d, provided v ≥ 𝒱 and no process
from the core attempts to advance to a higher view within d

co
re

• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

Consensus
1

2

3
1

enter_view(1)

enter_view(1)

advance

advance

1B 1B

2
enter_view(2)

1B enter_view(2)

1B

≤ d

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

co
re

• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

• By Progress, some process from {2,3} enters view 2

• Nobody calls advance until a timer expires ⟹ by Validity, {2,3} stay in view 2 until this

• By Bounded entry, process 2 will promptly enter view 2 within d = δ * diameter(core)

Consensus
1

2

3
1

enter_view(1)

enter_view(1)

advance

advance

1B 1B

2
enter_view(2)

1B enter_view(2)

1B

≤ d

A process can enter v + 1 only if some process
from the core has invoked advance in v

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

co
re

• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

• By Progress, some process from {2,3} enters view 2

• Nobody calls advance until a timer expires ⟹ by Validity, {2,3} stay in view 2 until this

• By Bounded entry, process 2 will promptly enter view 2 within d = δ * diameter(core)

Consensus
1

2

3
1

enter_view(1)

enter_view(1)

advance

advance

1B 1B

2
enter_view(2)

1B enter_view(2)

1B

≤ d

2A
2A

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

co
re

• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

• By Progress, some process from {2,3} enters view 2

• Nobody calls advance until a timer expires ⟹ by Validity, {2,3} stay in view 2 until this

• By Bounded entry, process 2 will promptly enter view 2 within d = δ * diameter(core)

Consensus
1

2

3
1

enter_view(1)

enter_view(1)

advance

advance

1B 1B

2
enter_view(2)

1B enter_view(2)

1B

≤ d

2A
2A

2B

2B

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

co
re

• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

• Nobody calls advance until a timer expires ⟹ by Validity, {2,3} stay in view 2 until this

• By Progress, some process from {2,3} enters view 2

• By Bounded entry, process 2 will promptly enter view 2 within d = δ * diameter(core)

Consensus
1

2

3
1

enter_view(1)

enter_view(1)

advance

advance

1B 1B

2
enter_view(2)

1B enter_view(2)

1B

≤ d

2A
2A

2B

2B

• When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*δ. If it expires, call advance

co
re

• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

• By Progress, some process from {2,3} enters view 2

• Processes in the core will decide before any timer expires

• By Bounded entry, process 2 will promptly enter view 2 within d = δ * diameter(core)

• Nobody calls advance until a timer expires ⟹ by Validity, {2,3} stay in view 2 until this

 Proving liveness

• Don't know δ ⟹ increase timeouts when calling advance

• Proof - interplay between the properties of the consensus protocol
and the synchronizer

• Top-level protocol proofs are simple, synchronizer proofs more
complex

• The structure is reused for proofs of different protocols: in the
Byzantine context, have given the first proof of liveness to PBFT

• Separating liveness from safety simplifies the design and
proofs of consensus protocols

• Synchronizers are widely applicable, from crash to
Byzantine failures

• CAP is not everything. Now working on generalizing lower
bounds to non-cardinality based failure patterns

Conclusion

