Synchronizer: a recipe for building correct
algorithms under partial synchrony

Alexey Gotsman
IMDEA Software Institute, Madrid, Spain

Joint work with Manuel Bravo (Informal Systems),
Gregory Chockler (University of Surrey), and
Alejandro Naser Pastoriza (IMDEA)

Fault-tolerant distributed computing

* Many distributed computing problems are unsolvable
under asynchrony and failures

* Consensus and state-machine replication [FLP835]

e Compromise: provide safety always and liveness only
under synchrony

Partial synchrony [DLS88]

asynchronous period

D
O
O,

Partial synchrony [DLS88]

asynchronous period

D
O
O,

e Messages delayed or lost

Partial synchrony [DLS88]

asynchronous period

D
O
O,

e Messages delayed or lost

e Process clocks out of sync

Partial synchrony [DLS88]

asynchronous period synchronous period

D
O
O,

GST
e Messages delayed or lost

e Process clocks out of sync

Partial synchrony [DLS88]

asynchronous period synchronous period

D
O
O,

GST

e Messages delayed or lost e Messages through correct channels

delivered within an unknown time 6
e Process clocks out of sync

Partial synchrony [DLS88]

asynchronous period synchronous period

D
O
O,

GST

e Messages delayed or lost e Messages through correct channels

delivered within an unknown time 6
e Process clocks out of sync

e Process clocks track real time

Partial synchrony [DLS88]

@ asynchronous period synchronous period
E >
A
GST
e Messages delayed or lost e Messages through correct channels

delivered within an unknown time 6
e Process clocks out of sync

e Process clocks track real time

Byzantine or crash failures

It ain't simple

[SOSP'07, Best Paper Award]

Zyzzyva: Speculative Byzantine Fault Tolerance

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong
Dept. of Computer Sciences
University of Texas at Austin
{kotla,lorenzo,dahlin,aclement,elwong}@cs.utexas.edu

ABSTRACT

We present Zyzzyva, a protocol that uses speculation to re-
duce the cost and simplify the design of Byzantine fault
tolerant state machine replication. In Zyzzyva, replicas re-
spond to a client’s request without first running an expensive
three-phase commit protocol to reach agreement on the or-
der in which the request must be processed. Instead, they
optimistically adopt the order proposed by the primary and
respond immediately to the client. Replicas can thus be-
come temporarily inconsistent with one another, but clients
detect inconsistencies, help correct replicas converge on a
single total ordering of requests, and only rely on responses
that are consistent with this total order. This approach al-
lows Zyzzyva to reduce replication overheads to near their
theoretical minima.

Categories and Subject Descriptors

D.4.5 [Operating Systems]: Reliability— Fault-tolerance;
D.4.7 [Operating Systems]|: Organization and Design—
Distributed systems; H.3.4 [Information Storage and Re-
trieval]: Systems and Software— Distributed systems

General Terms

Performance, Reliability

non-fail-stop behavior in real systems [2, 5, 6, 27, 30, 32,
36, 39, 40] suggest that BFT may yield significant benefits
even without resorting to n-version programming [4, 15, 33].
Third, improvements to the state of the art in BFT replica-
tion techniques [3, 9, 10, 18, 33, 41] make BFT replication
increasingly practical by narrowing the gap between BFT
replication costs and costs already being paid for non-BFT
replication. For example, by default, the Google file system
uses 3-way replication of storage, which is roughly the cost
of BFT replication for f = 1 failures with 4 agreement nodes
and 3 execution nodes [41].

This paper presents Zyzzyva', a new protocol that uses
speculation to reduce the cost and simplify the design of BFT
state machine replication [19, 35]. Like traditional state ma-
chine replication protocols [9, 33, 41], a primary proposes an
order on client requests to the other replicas. In Zyzzyva,
unlike in traditional protocols, replicas speculatively exe-
cute requests without running an expensive agreement pro-
tocol to definitively establish the order. As a result, correct
replicas’ states may diverge, and replicas may send different
responses to clients. Nonetheless, applications at clients ob-
serve the traditional and powerful abstraction of a replicated
state machine that executes requests in a linearizable [13]
order because replies carry with them sufficient history in-
formation for clients to determine if the replies and history
are stable and guaranteed to be eventually committed. If a

crertilative ranlyy arnd hictary are ctahle +he ~Alicnt 11cee +he

It ain't simple

[SOSP'07, Best Paper Award]

Zyzzyva: Speculative Byzantine Fault Tolerance

ABS

We p
duce
tolerg
spond
three]
der i1
optin]
respo
come
detec
singld
that §
lows
theor

Catgq

D.4.5
D.4.7
Distn
triev

Gen
Perfo

Revisiting Fast Practical Byzantine Fault Tolerance

Ittai Abraham, Guy Gueta, Dahlia Malkhi

VMware Research

with:
Lorenzo Alvisi (Cornell),
Rama Kotla (Amazon),
Jean-Philippe Martin (Verily)

December 6, 2017

Abstract

In this note, we observe a safety violation in Zyzzyva and a liveness violation in FaB 15].
To demonstrate these issues, we require relatively simple scenarios, involving only four replicas, and one
or two view changes. In all of them, the problem is manifested already in the first log slot.

1 Introduction

A landmark solution in achieving replication with Byzantine fault tolerance has been the Practical Byzantine
Fault Tolerance (PBFT) work by Castro and Liskov [3] [4]. Since the PBFT publication, there has been a

stream of works aiming to improve the efficiency of PBFT protocols. One strand of these works revolves

It ain't simple

[SOSP'07, Best Paper Award]

Zyzzyva: Speculative Byzantine Fault Tolerance

ABS
We p

duce

tolerg
spond
three
der i1
optin]
respo
come
detec
singld
that §
lows

theor

Catgq

D.4.5
D.4.7
Distn
triev

Gen
Perfo

Revisiting Fast Practical Byzantine Fault "Tolerance

Ittai Abraham, Guy Gueta, Dahlia Malkhi
VMware Research

with:
Lorenzo Alvisi (Cornell),
Rama Kotla (Amazon),
Jean-Philippe Martin (Verily)

Formal Verification of Blockchain Byzantine Fault Tolerance
Tholoniat & Gramoli, FRIDA'19

Table 1: Consensus algorithms that experienced liveness or safety limitations

Algorithms Ref. Limitation Counter-example Alternative Blockchain

Randomized consensus [41] liveness [new] [42] HoneyBadger [40]
Casper [13] liveness [new] [52] Ethereum v2.0 [26]
Ripple consensus [47] safety [5] [18] xRapid [11]
Tendermint consensus [12] safety [4] [3] Tendermint [36]
Zyzzyva [35] safety [1] [6] SBFT [27]
IBFT [38] liveness [46] [46] Quorum [19]

It ain't simple

Christian Cachin
Rachid Guerraoui
Luis Rodrigues

Introduction to

Reliable and
Secure Distributed
Programming

Second Edition

@ Springer

e Byzantine Consensus protocol
via a modular decomposition

* Found a liveness bug

e Fixable, but the intermediate
abstractions will remain broken:
too strong to be implementable

Leader-driven consensus

i

@V

* The leader proposes a value to vote on
* The processes can vote to accept the value

e (Consensus is reached when enough processes vote to accept
the value

Failed votes

* \otes may fail: faulty leader or asynchronous network

e May need to change leaders

Views

* Divide the execution into views (aka rounds), each with a fixed
leader: view mod n

* Divide the execution into views (aka rounds), each with a fixed
leader: view mod n

Views

I
3

3

—i
N
@D
=

() ™-= - -

G)
-

* Divide the execution into views (aka rounds), each with a fixed
leader: view mod n

e Will hit a good leader after GST = will decide

View synchronization

 Before GST: clocks out of sync, messages delayed or lost

View synchronization

|

1 E 2 3 4 0 Ly N
: ! :

'

I]
il il 20 4 v .
................... :

'

. :

i '

GST

 Before GST: clocks out of sync, messages delayed or lost

e After GST: need to bring all non-faulty processes into the same view

View synchronization

|

1 E 2 3 4 0 Ly N
: ! :

'

I]
il il 20 4 v .
................... :

'

. :

i '

GST

 Before GST: clocks out of sync, messages delayed or lost
e After GST: need to bring all non-faulty processes into the same view

* Integrating the liveness mechanisms complicates the protocol

Synchronizer

Consensus

Synchronizer

Synchronizer tells the processes when to switch views
[DLS88], [HotStuff, PODC'19], [Naor&Keidar, DISC'20]...

Reused across different protocols = more systematic design,
modular proofs

White-box optimizations can be done for each protocol

Our contributions

* Precise specification of the synchronizer abstraction
* Synchronizer implementations under partial synchrony

* (Case studies of implementing live consensus and
state-machine replication

Our contributions

Precise specification of the synchronizer abstraction
Synchronizer implementations under partial synchrony

Case studies of implementing live consensus and
state-machine replication

Different failure models:
> Byzantine faults [DISC'20, DISC'22]
> Crash faults and classical partial synchrony model

> Crash faults and intermitted connectivity [arxiv]

Crashes ain't simple either

[OSDI'18]

An Analysis of Network-Partitioning Failures in Cloud Systems

Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, Samer Al-Kiswany
University of Waterloo, Canada

Abstract

We present a comprehensive study of 136 system
failures attributed to network-partitioning faults from
25 widely used distributed systems. We found that the
majority of the failures led to catastrophic effects, such
as data loss, reappearance of deleted data, broken locks,
and system crashes. The majority of the failures can
easily manifest once a network partition occurs: They
require little to no client input, can be triggered by
isolating a single node, and are deterministic. However,
the number of test cases that one must consider is
extremely large. Fortunately, we identify ordering,
timing, and network fault characteristics that
significantly simplify testing. Furthermore, we found
that a significant number of the failures are due to
design flaws in core system mechanisms.

We found that the majority of the failures could
have been avoided by design reviews, and could have
been discovered by testing with network-partitioning
fault injection. We built NEAT, a testing framework

that simplifies the coordination of multiple clients and 4

~ertr 111t A1FCAavannt 4 vxrnnnc A v atrrsrawls tvavt1tt ity Frov1x 144

production networks, network-partitioning faults occur
as frequently as once a week and take from tens of
minutes to hours to repair.

Given that network-partitioning fault tolerance is a
well-studied problem [13, 14, 17, 20], this raises
questions about how these faults sill lead to system
failures. What is the impact of these failures? What are
the characteristics of the sequence of events that lead to
a system failure? What are the characteristics of the
network-partitioning faults? And, foremost, how can we
improve system resilience to these faults?

To help answer these questions, we conducted a
thorough study of 136 network-partitioning failures!
from 25 widely used distributed systems. The systems
we selected are popular and diverse, including key-
value systems and databases (MongoDB, VoltDB,
Redis, Riak, RethinkDB, HBase, Aerospike, Cassandra,
Geode, Infinispan, and Ignite), file systems (HDFS and
MooseFS), an object store (Ceph), a coordination
service (ZooKeeper), messaging systems (Kafka,
ActiveMQ, and RabbitMQ), a data-processing
framework (Hadoop MapReduce), a search engine

Crashes ain't simple either

[OSDI'18]

An Analysis of Network-Partitioning Failures in Cloud Systems

Ahmed Alquraan, Hatem Takruri, Mohammed A
University of Waterloo, Ce

Abstract

We present a comprehensive study of 136 system
failures attributed to network-partitioning faults from
25 widely used distributed systems. We found that the
majority of the failures led to catastrophic effects, such
as data loss, reappearance of deleted data, broken locks,
and system crashes. The majority of the failures can
easily manifest once a network partition occurs: They
require little to no client input, can be triggered by
isolating a single node, and are deterministic. However,
the number of test cases that one must consider is
extremely large. Fortunately, we identify ordering,
timing, and network fault characteristics that
significantly simplify testing. Furthermore, we found
that a significant number of the failures are due to
design flaws in core system mechanisms.

We found that the majority of the failures could
have been avoided by design reviews, and could have
been discovered by testing with network-partitioning
fault injection. We built NEAT, a testing framework

that simplifies the coordination of multiple clients and 4

~ertr 111t A1FCAavannt 4 vxrnnnc A v atrrsrawls tvavt1tt ity Frov1x 144

production
as frequen
minutes to
Given
well-studie
questions
failures. W
the charac
a system |
network-pc
improve s)
To hel
thorough
from 25 w
we selecte
value syst
Redis, Rial
Geode, Inf
MooseFS).
service (.
ActiveMQ
framework

Table 1. List of studied system. The table shows systems’
consistency model, number of failures, and number of
catastrophic failures. Highlighted rows indicate systems we
tested using NEAT, and the number of failures we found.

System Consistency Model Total lg:tl:s‘::ophic
MongoDB [31] Strong 19 11
VoltDB [33] Strong 4 4
RethinkDB [52] Strong 3 3
HBase [56] Strong 5 3
Riak [57] Strong/Eventual 1 1
Cassandra [58] Strong 4 4
Aerospike [59] Eventual 3 3
Geode [60] Strong 2 2
Redis [32] Eventual 3 2
Hazelcast [29] Best Effort 7 5
Elasticsearch [28] Eventual 22 21
ZooKeeper [61] Strong 3 3
HDFS [1] Custom 4 2
Kafka [30] - 5 3
RabbitMQ [62] - 7 4
MapReduce [4] - 6 2
Chronos [63] - 2 1
Mesos [64] - 4 0
Infinispan [42] Strong 1 1
Ignite [39] Strong 15 13
Terracotta [40] Strong 9 9
Ceph [37] Strong 2 2
MooseFS [43] Eventual 2 2
ActiveMQ [38] - 2 2
DKron [41] - 1 1
Total - 136 104

1AL PsPRITCTTTC T Syeareiien2111C

CAP theorem

Can't get all of:
* strong Consistency
* Availability

e Partition-tolerance

CAP theorem

Can't get all of:
* strong Consistency
* Availability

e Partition-tolerance

Doesn't preclude availability in parts of the system:
can run Paxos at the majority side of a partition

Types of network failures

()—

\

indirect connectivity
/ partial partitions

Types of network failures

@«\d»/@ G\f

indirect connectivity
/ partial partitions

asymmetric connectivity

Types of network failures

\d/@ ____________________

indirect connectivity
/ partial partitions

asymmetric connectivity iIntermittent connectivity

Types of network failures

\d’@ S \ ______________

indirect connectivity
/ partial partitions

asymmetric connectivity iIntermittent connectivity

Often consequence of Byzantine router failures

Flaky channels

e (Can drop an arbitrary subset of
messages sent through them ®< -------------------- >

L4
*
4
L4
&
L4
4
4
L4
L4
4
:.

Flaky channels

e (Can drop an arbitrary subset of

messages sent through them ®< -------------------- >@
e Capture indirect, asymmetric i

and intermittent connectivity,

selective omission... @

Flaky channels

e (Can drop an arbitrary subset of

messages sent through them ®< -------------------- >@
e Capture indirect, asymmetric i

and intermittent connectivity,

selective omission... @

 Flaky channels strictly weaker
than fair-lossy ones

Failure detectors don’t work

e Can'timplement consensus by
first implementing Q) ®< -------------------- »@

*
4
L4
&
L4

4

4

L4

L4

4

:.

Failure detectors don’t work

e Can'timplement consensus by e
firSt implementing Q @(.................... >

V&
 Flaky channels can deliver Q 450
messages

Failure detectors don’t work

Can't implement consensus by
. . . PING VvV
first implementing Q2 @«---1;;;{-;-2-1:-;--»@

)y
Flaky channels can deliver Q Q,éefi:’y
s, 0
messages Ry
But drop all other messages @

Failure detectors don’t work

Can't implement consensus by
| L] L] PING V
first implementing Q ®<...1;;;;;.2.;.;..,

Flaky channels can deliver Q Q,§’.~j;»?
o
messages >

)
But drop all other messages @

So Q) elects a leader with bad
connectivity

System model

asynchronous period synchronous period

1
]
1
1

- 5
1
1
1
1
i 1
SR 1
f10 2°) '
‘9 3: .
8 4 '
Uy 1
1
1
1

D
O
O,

GST

Partial synchrony where:
* Processes can fail by crashing

e (Channels between correct processes are either eventually
timely or flaky

Our results

* Upper bound:

> Can implement consensus if
at most a minority of processes crash, and @
a majority of correct processes are strongly
connected by correct channels: connected core

(O—3

core = {1,2,4}

Our results

* Upper bound:

> Can implement consensus if
at most a minority of processes crash, and @
a majority of correct processes are strongly
connected by correct channels: connected core

> Get availability only within the connected core

(O—3

core = {1,2,4}

Our results

* Upper bound:

> Can implement consensus if
at most a minority of processes crash, and @
a majority of correct processes are strongly
connected by correct channels: connected core

> Get availability only within the connected core

» Constructed using a synchronizer ®__>

core = {1,2,4}

Our results

* Upper bound:

> Can implement consensus if
at most a minority of processes crash, and @
a majority of correct processes are strongly
connected by correct channels: connected core

> Get availability only within the connected core

» Constructed using a synchronizer ®__>

core = {1,2,4}

* Lower bound: our connectivity assumption is optimal

Upper bound

Synch ronizer AP Naoraxeidar, 2020]

Consensus

Synchronizer

Synch ronizer AP Naoraxeidar, 2020]

Consensus

new view(V)

Synchronizer

e Synchronizer tells the processes to enter a view v via new view(v)

Synch ronizer AP Naoraxeidar, 2020]

Consensus

new view(V)

Synchronizer

e Synchronizer tells the processes to enter a view v via new view(v)

* Rules for when to switch views are protocol-specific

Synch ronizer AP Naoraxeidar, 2020]

Consensus

new view(V) advance

Synchronizer

e Synchronizer tells the processes to enter a view v via new view(v)
* Rules for when to switch views are protocol-specific

e A process requests a switch via advance

Synchronizer specification

Consensus

new view(V) advance

Synchronizer

* A balance between implementability and usability:
> Implementable in our model

» (Can be used to implement consensus

Validity

m- N BN = = = W W AE-Ay-dE-aE-AN- - - - .- .

A process can enter v + 1 only if some process from the core has
Invoked advance in v

Validity

m- N BN = = = W W AE-Ay-dE-aE-AN- - - - .- .

A process can enter v + 1 only if some process from the core has
Invoked advance in v

Ensures the system won't leave a view that all processes from the core
are happy with

Progress impiiied)

advance v+l

— —

advance
Prrrb bttt vy 20 - Ly I , <::::::>

advance

Y
N
()
o
<
L

e Some process from the core will enter v + 1 if >n/2 processes from the
core invoke advance in v

Progress impiiied)

advance v+l

]
] Ly
i
i advance
Prrrb bttt vy 20 Ly I ,
Ll r ol b e i '
!
1 2 ; 'V R
i]
1 advance
1 2 3 4 1 Ly I
1 '
1
1
e | 0 - Ly .
R 1 : ”
1

Some process from the core will enter v + 1 if >n/2 processes from the
core invoke advance in v

Allows iterating over views in search of a correct well-connected leader

Progress impiiied)

' advance v+l
1 2 3 4 I Ly I I
' :
i
i advance
Prrrb bttt vy 20 Ly I ;
Lo r bbb r e i '
|
1 2 ; 'V R
i]
1 advance
1 2 3 4 ! Y I
i :
1
1
Pl ol a b by 20 - Ly .
B 1 : g
1

Some process from the core will enter v + 1 if >n/2 processes from the
core invoke advance in v

Allows iterating over views in search of a correct well-connected leader

>n/2 advance calls instead of 1: needed for implementability

Bounded entry

<d
—
i
1 ; 2 : 3 . iV Ly
' ' : | s
'
::::::::::::;;;;;;;20: LV >
BEEEEE j :
'
@ 1 ! 2 : Ly R
: H :
1
@ 1 2 3 4 y
1
1
1
@:::::::::::::::::::20.

©
l

If a process from the core enters v, then all processes from the core will
enter v within d (e.g., 6 * diameter(core))

Bounded entry

E v | @

m- N BN BN BN | BN BN G- - - 3N - - - S - S - . - .

If a process from the core enters v, then all processes from the core will
enter v within d (e.g., 6 * diameter(core)),

provided v = V

Before GST may not be able to exchange
messages needed to synchronise processes

Bounded entry

(&

m- N BN BN BN | BN BN G- - - 3N - - - S - S - . - .

If a process from the core enters v, then all processes from the core will
enter v within d (e.g., 6 * diameter(core)),

provided v = V and no process from the core attempts to advance to a

higher view within d

/\

If a process calls advance from v, then some
processes may skip v and enter v+1 directly

Bounded entry

<d
—
[|
@ 1 : 2 : 3 : 4 iV -
: ' : I :

!
@::::::::::::;;;;;;;20: y .
- T i]

I
@ 1 ! 2 : Ly R
. i]
[|
@ 1 2 3 4 ! y
|
|
) '

N

o
(0,
m-
—I

=

If a process from the core enters v, then all processes from the core will
enter v within d (e.g., 6 * diameter(core)),

provided v = V and no process from the core attempts to advance to a
higher view within d

Allows promptly bringing the core into the same view

Synchronizer specification

* Progress: allows iterating over views in search for a leader from
the core

e Bounded entry: ensures all process from the core enter the
same view

e Validity: ensures processes from the core stay in a good view

Implementation

O
A
(%
=

()

m - -0 - - - - - - - .

G)
-

e Don’t just enter a new view once somebody calls advance:
processes need to communicate first

Implementation

e When a process calls advance in a view v,
it broadcasts WISH(v + 1), saying it wants to enter v + 1

Implementation

e \When a process calls advance in a view v,
it broadcasts WISH(v + 1), saying it wants to enter v + 1

A process enters view v + 1 when a majority of processes
express a similar wish: e.g. WISH(v + 1)

Implementation

e \When a process calls advance in a view v,
it broadcasts WISH(v + 1), saying it wants to enter v + 1

A process enters view v + 1 when a majority of processes
express a similar wish: e.g. WISH(v + 1)

 Requiring majority guards against disruptions by badly
connected processes

Implementation

e Maintain an array with the highest WISH received from each process:
run in bounded space

Implementation

Maintain an array with the highest WISH received from each process:
run in bounded space

When received n/2 + 1 wISHes for views > yours, enter the minimal
view in them

Implementation

Maintain an array with the highest WISH received from each process:
run in bounded space

When received n/2 + 1 wISHes for views > yours, enter the minimal
view in them

Implementation

Maintain an array with the highest WISH received from each process:
run in bounded space

When received n/2 + 1 wISHes for views > yours, enter the minimal
view in them

Implementation

Maintain an array with the highest WISH received from each process:
run in bounded space

When received n/2 + 1 wISHes for views > yours, enter the minimal
view in them

Switch regardless of whether you called advance: allows lagging
processes to catch up

Implementation

Maintain an array with the highest WISH received from each process:
run in bounded space

When received n/2 + 1 wISHes for views > yours, enter the minimal
view in them

Switch regardless of whether you called advance: allows lagging
processes to catch up

Messages can get lost before GST and we have to cope with indirect
connectivity: periodically resend the array with WISHes

Synchronizer correctness

* Proved correctness wrt our specification

* View synchronization mechanics hidden under the spec

Consensus liveness

e Liveness property: any propose() invocation by a process in
the connected core eventually returns

» Can't guarantee liveness outside the connected core

Consensus liveness

Liveness property: any propose() invocation by a process in
the connected core eventually returns

» Can't guarantee liveness outside the connected core

Implementation:
» Single-decree Paxos on top of the view synchronizer
> Leaders rotate round-robin: leader = view mod n

» Processes monitor the leader behaviour and call advance
If they suspect it’s faulty or has a bad connectivity

Consensus

O
1

core

Consensus

+ B3l

+ Bl

enter view(1l)

1
@ enter view(1l)

|
S N

* When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*0. If it expires, call advance

core

@ enter_view(

Consensus

+ Bl

+ Bl

enter v1ew

|
S N

When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*0. If it expires, call advance

core

@ enter view(advance

Consensus

Q

+ Bl

+ Bl

I
enter view(advance

1

When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*0. If it expires, call advance

Process 1 isn't connected = the timers eventually expire and {2,3} call advance

core

Consensus

Q

+ Bl

+ Bl

g

I .
enter view(advance enteraview(2)

1 H 2

1
1
1
1
1
1
1
1
1
1
1
enter view(advance : @
1
1

* When entering a view, send your value to the leader and set the timer for the expected

decision delay: 3*diameter(core)*0. If it expires, call advance

e Process 1 isn't connected = the timers eventually expire and {2,3} call advance

* By Progress, some process from {2,3} enters view 2

core

Consensus

Q

+ Bl

+ Bl

g

I .
enter view(advance enteraxview(2)

1 H 2

1
1
1
1
1
1
1
1
1
1
1
enter view(advance : @
1
1

* When entering a view, send your value to the leader and set the timer for the expected
decision delay: 3*diameter(core)*0. If it expires, call advance

e Process 1isn't connected = the timers eventually expire and {2,3} call advance

* By Progress, some process from {2,3} enters view 2

~

Some process from the core will enter v + 1 if more
than n/2 processes from the core invoke advance in v

core

Consensus

@ 8

+ Bl

+ Bl

g

I .
enter view(advance enteraview(2)

1 H 2

@ enter view(advance E @ enter view(2)

* When entering a view, send your value to the leader and set the timer for the expected

decision delay: 3*diameter(core)*0. If it expires, call advance

e Process 1isn't connected = the timers eventually expire and {2,3} call advance
* By Progress, some process from {2,3} enters view 2

e By Bounded entry, process 2 will promptly enter view 2 within d = 6 * diameter(core)

core

Consensus

@ 8

+ Bl

, [\

+]

+ Bl

g

I .
enter view(advance enteraxview(2)

1 H 2

@ enter view(advance E @ enter view(2)

* When entering a view, send your value to the leader and set the timer for the expected

decision delay: 3*diameter(core)*0. If it expires, call advance

e Process 1isn't connected = the timers eventually expire and {2,3} call advance
* By Progress, some process from {2,3} enters view 2

e By Bounded entry, process 2 will promptly enter view 2 within d = 6 * diameter(core)

If a process from the core enters v, then all processes from
the core will enter v within d, provided v = V and no process

from the core attempts to advance to a higher view within d

core

Consensus

@ 8

+ Bl

+ Bl

g

I .
enter view(advance enteraview(2)

1 H 2

@ enter view(advance E @ enter view(2)

* When entering a view, send your value to the leader and set the timer for the expected

decision delay: 3*diameter(core)*0. If it expires, call advance

e Process 1isn't connected = the timers eventually expire and {2,3} call advance
* By Progress, some process from {2,3} enters view 2
e By Bounded entry, process 2 will promptly enter view 2 within d = 6 * diameter(core)

e Nobody calls advance until a timer expires = by Validity, {2,3} stay in view 2 until this

core

Consensus

@ 8

+ Bl

, [\

+]

+ Bl

g

I .
enter view(advance enteraxview(2)

1 H 2

@ enter view(advance E @ enter view(2)

* When entering a view, send your value to the leader and set the timer for the expected

decision delay: 3*diameter(core)*0. If it expires, call advance

e Process 1isn't connected = the timers eventually expire and {2,3} call advance
* By Progress, some process from {2,3} enters view 2
e By Bounded entry, process 2 will promptly enter view 2 within d = 6 * diameter(core)

e Nobody calls advance until a timer expires = by Vali/o\lity, {2,3} stay in view 2 until this

A process can enter v + 1 only if some process
from the core has invoked advance in v

core

Consensus

N 1B 2A

+ Bl

+ Bl

g

I .
enter view(advance enteriview(2)

1

| AN

@ enter view(advance E @ enter view(2)

* When entering a view, send your value to the leader and set the timer for the expected

decision delay: 3*diameter(core)*0. If it expires, call advance

e Process 1isn't connected = the timers eventually expire and {2,3} call advance
* By Progress, some process from {2,3} enters view 2
e By Bounded entry, process 2 will promptly enter view 2 within d = 6 * diameter(core)

e Nobody calls advance until a timer expires = by Validity, {2,3} stay in view 2 until this

core

Consensus

@ 8

+ Bl

+ Bl

g

I .
enter view(advance enteriview(2)

1

@ enter view(advance E @ enter view(2)

* When entering a view, send your value to the leader and set the timer for the expected

decision delay: 3*diameter(core)*0. If it expires, call advance

e Process 1isn't connected = the timers eventually expire and {2,3} call advance
* By Progress, some process from {2,3} enters view 2
e By Bounded entry, process 2 will promptly enter view 2 within d = 6 * diameter(core)

e Nobody calls advance until a timer expires = by Validity, {2,3} stay in view 2 until this

core

Consensus

@ 8

+ Bl

+ Bl

g

I .
enter view(advance enteriview(2)

1

@ enter view(advance E @ enter view(2)

* When entering a view, send your value to the leader and set the timer for the expected

decision delay: 3*diameter(core)*0. If it expires, call advance

e Process 1 isn't connected = the timers eventually expire and {2,3} call advance
* By Progress, some process from {2,3} enters view 2
e By Bounded entry, process 2 will promptly enter view 2 within d = 6 * diameter(core)

e Nobody calls advance until a timer expires = by Validity, {2,3} stay in view 2 until this

* Processes in the core will decide before any timer expires

Proving liveness

Don't know 0 = increase timeouts when calling advance

Proof - interplay between the properties of the consensus protocol
and the synchronizer

Top-level protocol proofs are simple, synchronizer proofs more
complex

The structure is reused for proofs of different protocols: in the
Byzantine context, have given the first proof of liveness to PBFT

Conclusion

e Separating liveness from safety simplifies the design and
proofs of consensus protocols

e Synchronizers are widely applicable, from crash to
Byzantine failures

e CAP is not everything. Now working on generalizing lower
bounds to non-cardinality based failure patterns

