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• Many distributed computing problems are unsolvable 
under asynchrony and failures


• Consensus and state-machine replication [FLP85]


• Compromise: provide safety always and liveness only 
under synchrony

Fault-tolerant distributed computing
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Byzantine or crash failures
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[SOSP'07, Best Paper Award]

Formal Verification of Blockchain Byzantine Fault Tolerance  
Tholoniat & Gramoli, FRIDA’19 

It ain't simple



• Byzantine Consensus protocol 
via a modular decomposition


• Found a liveness bug


• Fixable, but the intermediate 
abstractions will remain broken: 
too strong to be implementable

It ain't simple



Leader-driven consensus
v

• The leader proposes a value to vote on


• The processes can vote to accept the value


• Consensus is reached when enough processes vote to accept 
the value
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Failed votes
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• Votes may fail: faulty leader or asynchronous network


• May need to change leaders
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Views

1

2

3

GST
1 2 3 4 5

• Divide the execution into views (aka rounds), each with a fixed 
leader: view mod n

• Will hit a good leader after GST ⟹ will decide 
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View synchronization
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• Before GST: clocks out of sync, messages delayed or lost


• After GST: need to bring all non-faulty processes into the same view


• Integrating the liveness mechanisms complicates the protocol



Synchronizer

Consensus

Synchronizer

• Synchronizer tells the processes when to switch views 
[DLS88], [HotStuff, PODC'19], [Naor&Keidar, DISC'20]...


• Reused across different protocols ⟹ more systematic design, 
modular proofs


• White-box optimizations can be done for each protocol
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Our contributions

• Precise specification of the synchronizer abstraction

• Synchronizer implementations under partial synchrony

• Case studies of implementing live consensus and         
state-machine replication

• Different failure models:

‣ Byzantine faults [DISC'20, DISC'22]

‣ Crash faults and classical partial synchrony model

‣ Crash faults and intermitted connectivity [arxiv]
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CAP theorem

• strong Consistency


• Availability


• Partition-tolerance
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CAP theorem

• strong Consistency


• Availability


• Partition-tolerance

Can't get all of:

Doesn't preclude availability in parts of the system: 
can run Paxos at the majority side of a partition
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Types of network failures
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indirect connectivity 
/ partial partitions
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asymmetric connectivity

Often consequence of Byzantine router failures
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• Can drop an arbitrary subset of 
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• Can drop an arbitrary subset of 
messages sent through them

• Capture indirect, asymmetric 
and intermittent connectivity, 
selective omission...

• Flaky channels strictly weaker 
than fair-lossy ones
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Flaky channels
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Failure detectors don’t work

• Can't implement consensus by 
first implementing Ω

• Flaky channels can deliver Ω 
messages

• But drop all other messages

• So Ω elects a leader with bad 
connectivity

PING ✔

PI
NG
 ✔

Paxos2A ✘

Pa
xo
s2
A 
✘

1 2

3



System model

asynchronous period synchronous period

δ
1
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3

GST

Partial synchrony where:


• Processes can fail by crashing


• Channels between correct processes are either eventually 
timely or flaky



Our results
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‣ Can implement consensus if
at most a minority of processes crash, and 
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Our results

• Upper bound:

‣ Can implement consensus if
at most a minority of processes crash, and 
a majority of correct processes are strongly 
connected by correct channels: connected core

‣ Get availability only within the connected core

‣ Constructed using a synchronizer

• Lower bound: our connectivity assumption is optimal

core = {1,2,4}
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Upper bound
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Synchronizer API [Naor&Keidar, 2020]

Consensus

Synchronizer
new_view(v) advance

• Synchronizer tells the processes to enter a view v via new_view(v)

• Rules for when to switch views are protocol-specific

• A process requests a switch via advance



Synchronizer specification

Consensus

Synchronizer
new_view(v) advance

• A balance between implementability and usability:


‣ Implementable in our model


‣ Can be used to implement consensus



Validity

• A process can enter v + 1 only if some process from the core has 
invoked advance in v
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Validity

• A process can enter v + 1 only if some process from the core has 
invoked advance in v

• Ensures the system won't leave a view that all processes from the core 
are happy with
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Progress (simplified)

advance

advance

v+1advance

• Some process from the core will enter v + 1 if >n/2 processes from the 
core invoke advance in v

• Allows iterating over views in search of a correct well-connected leader

• >n/2 advance calls instead of 1: needed for implementability
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Bounded entry

𝒱
≤ d

• If a process from the core enters v, then all processes from the core will 
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Bounded entry

𝒱
≤ d

• If a process from the core enters v, then all processes from the core will 
enter v within d (e.g., δ * diameter(core)),

provided v ≥ 𝒱

Before GST may not be able to exchange 
messages needed to synchronise processes
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Bounded entry

𝒱
≤ d

• If a process from the core enters v, then all processes from the core will 
enter v within d (e.g., δ * diameter(core)),

provided v ≥ 𝒱 and no process from the core attempts to advance to a 
higher view within d

If a process calls advance from v, then some 
processes may skip v and enter v+1 directly

2

3

1

4

5



Bounded entry

𝒱
≤ d

• If a process from the core enters v, then all processes from the core will 
enter v within d (e.g., δ * diameter(core)),

provided v ≥ 𝒱 and no process from the core attempts to advance to a 
higher view within d


• Allows promptly bringing the core into the same view
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• Progress: allows iterating over views in search for a leader from 
the core


• Bounded entry: ensures all process from the core enter the 
same view 


• Validity: ensures processes from the core stay in a good view

Synchronizer specification



Implementation
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• Don’t just enter a new view once somebody calls advance: 
processes need to communicate first 
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Implementation

• When a process calls advance in a view v,                                    
it broadcasts WISH(v + 1), saying it wants to enter v + 1

• A process enters view v + 1 when a majority of processes 
express a similar wish: e.g. WISH(v + 1)

• Requiring majority guards against disruptions by badly 
connected processes
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run in bounded space
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Implementation

• Maintain an array with the highest WISH received from each process: 
run in bounded space

• When received n/2 + 1 WISHes for views > yours, enter the minimal 
view in them

• Switch regardless of whether you called advance: allows lagging 
processes to catch up
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Implementation

• Maintain an array with the highest WISH received from each process: 
run in bounded space

• When received n/2 + 1 WISHes for views > yours, enter the minimal 
view in them

• Switch regardless of whether you called advance: allows lagging 
processes to catch up

• Messages can get lost before GST and we have to cope with indirect 
connectivity: periodically resend the array with WISHes

4

2 1 1 5 3

1 2 3 5

2



Synchronizer correctness

• Proved correctness wrt our specification


• View synchronization mechanics hidden under the spec
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the connected core eventually returns

‣ Can't guarantee liveness outside the connected core



Consensus liveness

• Liveness property: any propose() invocation by a process in 
the connected core eventually returns

‣ Can't guarantee liveness outside the connected core

• Implementation:

‣ Single-decree Paxos on top of the view synchronizer

‣ Leaders rotate round-robin: leader = view mod n

‣ Processes monitor the leader behaviour and call advance 
if they suspect it’s faulty or has a bad connectivity
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• By Progress, some process from {2,3} enters view 2
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Some process from the core will enter v + 1 if more 
than n/2 processes from the core invoke advance in v
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• By Bounded entry, process 2 will promptly enter view 2 within d = δ * diameter(core)

• By Progress, some process from {2,3} enters view 2
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1B

≤ d

If a process from the core enters v, then all processes from 
the core will enter v within d, provided v ≥ 𝒱 and no process 
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• When entering a view, send your value to the leader and set the timer for the expected 
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• Process 1 isn't connected ⟹ the timers eventually expire and {2,3} call advance

• By Progress, some process from {2,3} enters view 2

• Processes in the core will decide before any timer expires

• By Bounded entry, process 2 will promptly enter view 2 within d = δ * diameter(core)

• Nobody calls advance until a timer expires ⟹ by Validity, {2,3} stay in view 2 until this



 Proving liveness

• Don't know δ ⟹ increase timeouts when calling advance


• Proof - interplay between the properties of the consensus protocol 
and the synchronizer


• Top-level protocol proofs are simple, synchronizer proofs more 
complex


• The structure is reused for proofs of different protocols: in the 
Byzantine context, have given the first proof of liveness to PBFT



• Separating liveness from safety simplifies the design and 
proofs of consensus protocols


• Synchronizers are widely applicable, from crash to 
Byzantine failures


• CAP is not everything. Now working on generalizing lower 
bounds to non-cardinality based failure patterns

Conclusion


