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The model

● Nodes operate in synchronous rounds
● Asynchronous starts: nodes do not start in the same round
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The model
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Justifying the problem

● Execution of a sequence of algorithms A ; B



  5

Justifying the problem
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A first solution: the firing squad algorithm
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The firing squad problem

● Liveness: every node eventually “fires”
● Safety: if two nodes “fire”, they “fires” simultaneously (in the 

same round)
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The firing squad problem

● Liveness: every node eventually “fires”
● Safety: if two nodes “fire”, they “fires” simultaneously (in the 

same round)

➔ Essentially unsolvable without strong connectivity in each round
[Charron-Bost & Moran. TCS2019]
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The mod P-synchronization problem

● Liveness: each node eventually “fires”
● Safety: if two node “fire”, they “fire” in the same round modulo P
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The mod P-synchronization problem
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Uses cases of mod P-firing squad

● Round-robin leader election
– Round 1: node 1 leads
– Round 2: node 2 leads
– …
– Round 7: node 7 leads
– Round 8: node 1 leads again
– …

● P = n 
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The model

round 1
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The model

round 2
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The model

round 3
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The model

round 4
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The model

round 5
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Our result

● We solve mod P-synchronization assuming that:
– The dynamic radius, denoted R, is finite.
– The nodes must “know” an upper bound on R.
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Eccentricity of node i

i

● The eccentricity of i is 2
● All other eccentricities 

are infinite
● i is said to be central
● The radius is 2
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A temporal path in a dynamic graph
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A temporal path in a dynamic graph
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A temporal path in a dynamic graph
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A temporal path in a dynamic graph
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Dynamic eccentricity and dynamic radius

● The eccentricity of node i is the longest shortest path between i and 
any other node.

● The dynamic eccentricity of node i is the longest shortest temporal 
path between i and any other node.

● The radius of a graph is the minimum eccentricity.
● The dynamic radius of a graph is the minimum dynamic eccentricity.
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Intermediary result

● We construct the algorithm SynchModP which solves mod P-
synchronization, assuming a finite dynamic radius R and
➢ R  P≤

➢ P > 2
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Presentation of SynchModP

● Each node i holds a variable                 
– Initial level = level 0
– Reaching level 2 = firing

● Each node i holds a variable

leveli∈{0 ,1 ,2}

ci∈ℕ
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Presentation of SynchModP
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Presentation of SynchModP
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Presentation of SynchModP

● Initially:
– ci = 0
– leveli = 0
– forcei = 0
– synchi = false
– readyi = false

● At each round:
– send <ci, forcei, synchi, readyi> to all
– receive messages from nodes Ina

– if all receives messages are non-null
○ synchi ←  synch⋀ j  c∧ j ≡P ci

– else
○ synchi ← false

– readyi ←  ready⋀ j
– forcei ← max forcej
– ci ← 1 + min cj

– if ci ≡P 0

○ If synchi  level∧ i = 0 
● leveli ← 1
● if forcei < 2

● forcei ← 1
● ci ← 0

○ if leveli = 1  ready∧ i  synch∧ i

● forcei ← 2
● leveli ← 2
● ci ← 0

○ synchi ← true
○ readyi ← level > 0
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Getting rid of extra assumptions

Solving mod P-synchronization

Solving mod P’-synchronization

where P’ is a divisor of P

Example: if the dynamic radius is at most equal to 7 and P = 3, then:
● SynchMod3 is incorrect
● SynchMod9 solves mod 9-synchronization, and thus mod 3-synchronization
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An impossibility result

Theorem:

The mod P-synchronization problem is unsolvable if the dynamic 
radius is finite but no bound on it is known by the nodes
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Complexity of SynchModP

● Time-Complexity: O(n)
● Memory storage of each node:

– Initial approach: memory usage tends to infinity 
– Optimized approach: O(log n) 

n is the size of the network
the parameter P is treated as a constant
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The model

● datatype ‘s state =

| Active s

| Passive
● exec :: nat :> Node :> s state
● network :: nat :> Node :> Node set

set of states
of the algorithm
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The model

● Definition of the algorithm:
– InitState :: s :> bool

– SendMsg   :: s :> m

– NextState :: s :> (Node :> m message) :> s :> bool

● datatype 'm message =

        | Content m

        | Void

        | Bot

absence of
message

a message
received with
payload in m

“heartbeats” sent by
passive node



  35

Formal proof
fixes P network exec central_node

constrains P :: nat

  network :: nat :> Proc :> Node Set

  exec :: nat :> Proc :> s state

  central_node :: Proc

assumes star: ∀ i n. path network central_node i n P

  and loop: ∀ i r. i : network r i

  and run: HORun Algo exec network

  and P2: P > 2

  and complete: ∀ i. ∃ t. rho t i ≠ Asleep

  and finite: OFCLASS(proc, finite_class)
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Formal proof
● theorem                                               :* liveness :/

– ∀ p. ∃ s. rho b p = Active s ∧ level s = 2

● theorem                                               / * safety :/

– ∃ c. ∀ i t s1 s2. 

                        rho t i = Active s ::>

                        (level s < 2) ::>

                        rho (Suc t) i = Active s2 ::>

                        level s2 = 2 ::>

                        t mod P = c
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Conclusion

● Our contribution:
– Definition of the mod P-synchronization problem
– Introduction of SynchModP

– Verification of SynchModP using Isabelle


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37

